Authors:
Ricardo Jorge Santos
1
and
Jorge Bernardino
2
Affiliations:
1
CISUC – Centre of Informatics and Systems of the University of Coimbra, Portugal
;
2
CISUC – Centre of Informatics and Systems of the University of Coimbra; ISEC – Superior Engineering Institute of Coimbra – Polytechnic Institute of Coimbra, Portugal
Keyword(s):
Real-time and active data warehousing, continuous data integration, refreshment loading process.
Related
Ontology
Subjects/Areas/Topics:
Data Warehouses and OLAP
;
Databases and Information Systems Integration
;
Enterprise Information Systems
Abstract:
A data warehouse provides information for analytical processing, decision making and data mining tools. As the concept of real-time enterprise evolves, the synchronism between transactional data and data warehouses, statically implemented, has been reviewed. Traditional data warehouse systems have static structures of their schemas and relationships between data, and therefore are not able to support any dynamics in their structure and content. Their data is only periodically updated because they are not prepared for continuous data integration. For these purposes, real-time data warehouses seem to be very promising. In this paper we present a methodology on how to adapt data warehouse schemas and user-end OLAP (On-Line Analytical Processing) queries for efficiently supporting real-time data integration. To accomplish this, we use techniques such as table structure replication and query predicate restrictions for selecting data, managing to enable continuous data integration in the d
ata warehouse with minimum impact in query execution time. We demonstrate the functionality of the method by analyzing its impact in query performance using benchmark TPC-H executing query workloads while simultaneously performing continuous data integration at various insertion time rates.
(More)