loading
Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Paper Unlock

Authors: Peter Geibel 1 ; Hebun Erdur 1 ; Lothar Zimmermann 1 ; Stefan Krüger 1 ; Kati Jegzentis 2 ; Josef Schepers 1 ; Anne Becker 3 ; Frank Müller 1 ; Christian Hans Nolte 1 ; Jan Friedrich Scheitz 1 ; Serdar Tütüncü 1 ; Tatiana Usnich 1 ; Markus Frick 3 ; Martin Trautwein 3 ; Thorsten Schaaf 1 ; Alfred Holzgreve 3 and Thomas Tolxdorff 1

Affiliations: 1 Charité - Universitätsmedizin Berlin, Germany ; 2 Charité - Universitätsmedizin Berlin, Germany ; 3 Vivantes - Netzwerk für Gesundheit GmbH, Germany

Keyword(s): Ontologies, Information Extraction, Computational Linguistics, RDFS, Secondary Use of Health Data, Patient Recruitment, Clinical Data Warehouse.

Related Ontology Subjects/Areas/Topics: Applications ; Applications and Case-studies ; Artificial Intelligence ; Data Engineering ; Domain Analysis and Modeling ; Enterprise Ontology ; Knowledge Engineering and Ontology Development ; Knowledge-Based Systems ; Natural Language Processing ; Ontologies and the Semantic Web ; Pattern Recognition ; Symbolic Systems

Abstract: In this paper, we describe the use of ontologies in the context of a system for recruiting patients for clinical trials, which is currently being tested at the {\em Charit\'{e} – Universitätsmedizin Berlin}, one of the largest university hospitals in Europe. The main purpose of the CRDW (Clinical Research Data Warehouse) is to support patient recruitment for clinical trials based on routine data from the hospital's clinical information system (CIS). In contrast to most other systems for similar purposes, the CRDW also makes use of information that is present in clinical documents like admission reports, radiological findings, and discharge letters. The linguistic analysis recognizes negated and coordinated phrases. It is supported by clinical domain ontologies that enable the identification of main terms and their properties, as well as semantic search with synonyms, hypernyms, and syntactic variants. The focus of this paper is the description of our ontology model, which we tailor ed to the particular requirements of our application. In the article, we will also provide an evaluation of the system based on experimental data obtained from the daily routine work of the study assistants. (More)

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 18.191.189.124

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Geibel, P.; Erdur, H.; Zimmermann, L.; Krüger, S.; Jegzentis, K.; Schepers, J.; Becker, A.; Müller, F.; Nolte, C.; Scheitz, J.; Tütüncü, S.; Usnich, T.; Frick, M.; Trautwein, M.; Schaaf, T.; Holzgreve, A. and Tolxdorff, T. (2013). Patient Identification for Clinical Trials with Ontology-based Information Extraction from Documents. In Proceedings of the International Conference on Knowledge Engineering and Ontology Development (IC3K 2013) - KEOD; ISBN 978-989-8565-81-5; ISSN 2184-3228, SciTePress, pages 230-236. DOI: 10.5220/0004544702300236

@conference{keod13,
author={Peter Geibel. and Hebun Erdur. and Lothar Zimmermann. and Stefan Krüger. and Kati Jegzentis. and Josef Schepers. and Anne Becker. and Frank Müller. and Christian Hans Nolte. and Jan Friedrich Scheitz. and Serdar Tütüncü. and Tatiana Usnich. and Markus Frick. and Martin Trautwein. and Thorsten Schaaf. and Alfred Holzgreve. and Thomas Tolxdorff.},
title={Patient Identification for Clinical Trials with Ontology-based Information Extraction from Documents},
booktitle={Proceedings of the International Conference on Knowledge Engineering and Ontology Development (IC3K 2013) - KEOD},
year={2013},
pages={230-236},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004544702300236},
isbn={978-989-8565-81-5},
issn={2184-3228},
}

TY - CONF

JO - Proceedings of the International Conference on Knowledge Engineering and Ontology Development (IC3K 2013) - KEOD
TI - Patient Identification for Clinical Trials with Ontology-based Information Extraction from Documents
SN - 978-989-8565-81-5
IS - 2184-3228
AU - Geibel, P.
AU - Erdur, H.
AU - Zimmermann, L.
AU - Krüger, S.
AU - Jegzentis, K.
AU - Schepers, J.
AU - Becker, A.
AU - Müller, F.
AU - Nolte, C.
AU - Scheitz, J.
AU - Tütüncü, S.
AU - Usnich, T.
AU - Frick, M.
AU - Trautwein, M.
AU - Schaaf, T.
AU - Holzgreve, A.
AU - Tolxdorff, T.
PY - 2013
SP - 230
EP - 236
DO - 10.5220/0004544702300236
PB - SciTePress