loading
Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Authors: Ayato Takama ; Satoshi Kamiya and Kazuhiro Hotta

Affiliation: Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan

Keyword(s): Semantic Segmentation, TransUNet, Mix Transformer, Word Patches.

Abstract: UNet is widely used in medical image segmentation, but it cannot extract global information sufficiently. On the other hand, TransUNet achieves better accuracy than conventional UNet by combining a CNN, which is good at local features, and a Transformer, which is good at global features. In general, TransUNet requires a large amount of training data, but there are constraints on training images in the medical area. In addition, the encoder of TransUNet uses a pre-trained model on ImageNet consisted of natural images, but the difference between medical images and natural images is a problem. In this paper, we propose a method to learn Word Patches from other medical datasets and effectively utilize them for training TransUNet. Experiments on the ACDC dataset containing 4 classes of 3D MRI images and the Synapse multi-organ segmentation dataset containing 9 classes of CT images show that the proposed method improved the accuracy even with small training data, and we showed that the per formance of TransUNet is greatly improved by using Word Patches created from different medical datasets. (More)

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 13.59.111.183

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Takama, A.; Kamiya, S. and Hotta, K. (2024). Improvement of TransUNet Using Word Patches Created from Different Dataset. In Proceedings of the 13th International Conference on Pattern Recognition Applications and Methods - ICPRAM; ISBN 978-989-758-684-2; ISSN 2184-4313, SciTePress, pages 378-385. DOI: 10.5220/0012419900003654

@conference{icpram24,
author={Ayato Takama. and Satoshi Kamiya. and Kazuhiro Hotta.},
title={Improvement of TransUNet Using Word Patches Created from Different Dataset},
booktitle={Proceedings of the 13th International Conference on Pattern Recognition Applications and Methods - ICPRAM},
year={2024},
pages={378-385},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0012419900003654},
isbn={978-989-758-684-2},
issn={2184-4313},
}

TY - CONF

JO - Proceedings of the 13th International Conference on Pattern Recognition Applications and Methods - ICPRAM
TI - Improvement of TransUNet Using Word Patches Created from Different Dataset
SN - 978-989-758-684-2
IS - 2184-4313
AU - Takama, A.
AU - Kamiya, S.
AU - Hotta, K.
PY - 2024
SP - 378
EP - 385
DO - 10.5220/0012419900003654
PB - SciTePress