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Abstract: This paper proposes an Adaptive Smith Predictor Controller (ASPC) based on Neuro-Fuzzy Hammerstein 
Models (NFHM) with on-line non-linear model parameters identification. The NFHM approach uses a zero-
order Takagi-Sugeno fuzzy model to approximate the non-linear static function that is tuned off-line using 
gradient decent algorithm and to identify the linear dynamic function it is used the Recursive Least Square 
estimation with Covariance Matrix Reset (RLSCMR). This algorithm has the capability of follow fast and 
slow dynamic parameter changes. The proposed ASPC has special capabilities to control non-linear systems 
that have gain, time delay and dynamic changes through time. The implementation of the ASPC is made in 
two steps: first, off-line estimation of the non-linear static parameters that will be used to “get linear” the 
non-linearity of the system and second, on-line identification of the linear dynamic parameters updating 
direct and inverse models used in the ASPC. As an illustrative example, a gas water heater system is 
controlled with the ASPC. Finally, the control results are compared with the results obtained with the Smith 
Predictive Controller based in a Semi-Physical Model (SPMSPC). 
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1 INTRODUCTION 

Industry control processes presents many 
challenging problems, including non-linear dynamic 
behaviour, uncertain time delay and time varying 
parameters. During the last decades, a very 
promising model based control solution used in 
industry processes with time delay is the 
predictive/Smith predictive model based controller. 
In this algorithm it is important to choose the right 
model representation of the linear/non-linear system. 
The model should be accurate and robust for all 
working points, with a simple mathematical 
representation and with a transparent representation 
that makes it interpretable. The most common non-
linear modelling methods are: the NARX and 

NAARX models, neural-networks models fuzzy 
models and Hammerstein and Wiener models.  
When the knowledge of the control systems does not 
exist or the process is subject to changes in its 
dynamic characteristics it is important to use an 
adaptive control algorithm. 
There are two types of model based controllers:  off-
line tuned model based controllers (Abonyi el at., 
2000), (Pottmann and Seborg 1997), (Vieira el at., 
2003) and adaptive controllers with on-line 
parameters identification as (Abonyi el at., 1999) 
and (Fink el  at., 2001). 
This paper presents a simple adaptive model based 
controller that uses the NFHM approach (Vieira el 
at., 2004b) with a modification that gives to the 
algorithm the capability of identify on-line the linear 
dynamic parameters of the linear part of the global 
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model. Hammerstein model approach gives simple 
and interpretable models that facilitate the 
identification and its integration on control schemes. 
Based on this presupposes, it is proposed a simple 
solution for the adaptive control of non-linear 
systems that presents uncertain, time delay and time 
varying dynamic parameters. In time variant 
processes, the non-linear static functions are usually 
fixed through time (permitting tuning off line) and 
the changes are in its dynamic behaviour so it is 
necessary to identify the linear dynamic parameters 
on line (Fink el at., 2001). 
Section 2 and 3, describes the Neuro-Fuzzy 
Hammerstein Model structure and the modified 
identification method. For the non-linear static 
function approximation it is used a zero-order 
Takagi-Sugeno fuzzy model tuned with gradient 
decent algorithm. With the inverse of this non-linear 
static function the non-linear system will be linear. 
For the linear variant dynamic function 
approximation it is used the on-line recursive least 
square parameter estimation with reset of covariance 
matrix algorithm. This algorithm has the capability 
of identify fast and slow dynamic parameter 
changes. 
The challenger for non-linear on-line identification 
is to guarantee that all parameters of the varying 
dynamic model are correctly identifies even in the 
presence of a varying time delay and a noisy system.  
Section 4, describes the ASPC that is implemented 
in two steps: first, off-line estimation of the non-
linear static parameters and second, on-line 
identification of the linear dynamic parameters 
updating direct and inverse models of the system 
used in the controller. 
Section 5, shows the control results using the ASPC 
applied in to a domestic gas water heater system. 
The results are compared with the ones achieved 
with the Smith Predictive Controller based in a 
Semi-Physical Model (Vieira el at., 2004a). 
Finally, in section 6, the conclusions and future 
works are pointed. 

2 STRUCTURES OF THE NFHM  

The NFHM consists of a series connection of a non-
linear static function f(.) and a linear dynamic 
function G(s) as shown in Figure 1. 

Figure 1: Hammerstein Model. 
 

It is proposed, that the non-linear static function 
would be approximated by a zero-order Takagi-
Sugeno fuzzy model   

The fuzzy model function f(.) can be formulated 
as a set of r local constant functions z1=d1, …, zr=dr 
where d1,…, dr are constant parameters that are 
conjugated in the form of rules:  
 

1..r1..r1..r1..r dz THEN A isu  IF:R =  (1) 
 
where A1..r are the antecedent fuzzy sets for the input 
u and d1..r are the consequent constant parameters. 
All fuzzy sets are bell shaped type membership 
functions see Figure 2. 

From a given u, the output of the fuzzy model z is 
inferred by computing the weight average of the rule 
consequents: 
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Figure 2: Bell shaped membership functions of the 

fuzzy model (1..r fuzzy sets). 
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is the membership function of the input u relative to 
the fuzzy set Ai and aai, bbi and cci are parameters 
for adjust the shape and centre of the fuzzy set i. 

The number of rules/number of fuzzy sets will 
depend only of the complexity of the real static non-
linear function. After define the number of fuzzy 
set/rules the non-linear parameters aai, bbi and cci for 
all fuzzy sets and the linear parameters di for i=1..r 
rules should calculate. 

Non-Linear Transfer Function

f(.) G(s)
yu z

The second part of the structure of the NFHM is 
the definition of the linear dynamic function G(s). 
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This G(s) function is an n order linear system 
represented in discrete domain by equation 4 
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where a1, a2, …, any and b0, b1, b2, …, bnu are the 
numeric parameters of dynamic linear system. nu+1 
and ny indicated the order of the regressors need for 
each variable and nd is the discrete time delay. 
The global mathematical equation of the NFH global 
model is illustrated in equation 5. 
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3 IDENTIFICATION OF THE 
NFHM 

In time variant processes, the non-linear static 
functions are usually fixed through time so the 
parameters identification could be made off-line. 
Otherwise, the linear dynamic functions could 
present some changes in its dynamic behaviour so it 
is better to identify its parameters on line. For the 
identification of the non-linear static function the 
used training data should fulfil several requirements. 
The control signal u(k) applied to the system should 
be a step signal with a large number of steps in its 
universe [Umin, …, Umax]. The large number of 
steps is very important to get the exact non-linearity 
of the system (number of steps depends on the non-
linearity type function). Another important 
requirement is the time (number of samples) that the 
step control signal should be maintained with out 
any changes. This time should be long enough for 
the system achieving the stationary state (at least 5 
time constants of the system that achieves 99.1% of 
the stationary state). The figure 3 illustrates a typical 
training control signal u. 

With this type of training signal it is possible to 
get, first, the stationary state data for training the 

non-linear static function, and second, the transitory 
data for the initialisation of the dynamic linear 
function.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For training the non-linear static function there 
was used the two vectors with NS stationary state 
samples uss(ki) and yss(ki) obtained as shows figure 3 

Time (sec)

uUmax

Umin

...

y(ki)
u(ki)

y

i=1..NS

 
Figure 3: Typical training control signal. 
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For the initialisation of the dynamic linear 

function it is used all (N) samples of all u (static and 
dynamic samples). 
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         (7) 

 
The identification method imposes that all gain of 

the system is included in the non-linear static 
function and the dynamic linear function will have a 
unitary gain, at least in the off-line training phase.   

The non-linear static function is approximated by 
a zero-order Takagi Sugeno fuzzy modelled. The 
tuning of the parameters used in the fuzzy model can 
be considered as a numerical optimisation 
procedure. Among the methods that have been 
implemented so far the gradient decent adaptation 
method permits accurate learning of all parameters 
of the fuzzy modelled. The fuzzy model is 
parameterised by the following parameters. 
 

{ }setsfuzzy  rules/nº1..r i  ; d ,cc ,bb ,aa iiii ==ψ (8) 
 

The objective is to minimize the global prediction 
vector error between the model and the plant 
outputs. Therefore, the gradient decent method tends 
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to decrease the quadratic objective function based on 
the vector error 
 

( ) 1..Nllength   of   vectorsyy
2
1e 2

ssmm =−=

 (9) 
 
with z=y in stationary state, ymm is the 
approximation output vector of the fuzzy model  The 
parameter set Ψ, of the fuzzy model is changed via 
the following iterative (j) learning rule: 
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where λ is the learning rate parameter, which 
controls the learning velocity of the algorithm. The 
number of iterations will depend on the decreasing 
of the total vector error ∑e using the learning 
vectors. When the algorithm achieves a predefine 
small value or a maximum number of iterations the 
iterative algorithm stops. 

The partial derivatives of the model error e with 
the respect to the parameters of the fuzzy model are 
given by: 
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In the initialisation, the antecedent membership 

functions and the consequent constant functions are 
equidistantly distributed over the input and output 
respective universes of discourse. 
 

The second part of the learning algorithm is the 
definition of the linear dynamic function parameters. 
The first question that arises is the choice of the 
order/significant regressors of the modelled. To find 
the significant regressors of the system it could be 

used à priori knowledge of the system or the polo-
zero cancellation method. 
To estimate the initial a=a1, a2, …, any and b=b0, b1, 
b2, …, bnu vectors, it was used the Least Square 
algorithm. 
The modification of the NFHM approach is exactly 
here in the identification of the linear dynamic 
parameters. In this method this parameters are 
calculated on-line with recursive least square 
algorithm with reset of covariance matrix 
(RLSCMR) as expressed in equation 12,  
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where ab(k) is the vector with the instant k estimated 
parameters, λP is the learning rate and P(k) is the 
covariance matrix. The Reset Covariance Matrix 
(RCM) algorithm is used for a fast convergence in 
the identified parameters. If the error ε(k) is bigger 
than a pre-defined value the covariance matrix P is 
reset (starting values). 

4 ADAPTIVE SMITH PREDICTOR 
CONTROL STRUCTURE 

The Adaptive Smith Predictive Controller is based in 
the Internal Model Controller (IMC) architecture 
and is implemented in two phases. First is the off-
line estimation of the non-linear static parameters. 
Second is the on-line identification of the linear 
dynamic parameters updating the direct and inverse 
models of the system, as illustrated in figure 4. Off-
line, with the inversion of the non-linear static 
function, it is possible to transform the non-linear 
plant in to an approximate “linear” plant. Finally in 
closed loop control, iteration-by-iteration, the linear 
dynamic parameters are recalculated and updated. 
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Figure 4: ASPC constituent blocks. 
 

The ASPC separates the time-delay of the plant 
from the model of the plant, so it is possible to 
predict the y(k) n steps earlier (n= digital time-
delay), compensating the negative time-delay effects 
in the control results. The incorrect prediction of the 
time delay may lead to aggressive control if the 
time-delay is under estimated or conservative 
control if the time-delay is over estimated (Tan el 
at., 2002).  

5 ILLUSTRATIVE EXAMPLE: 
GAS WATER HEATER 
TEMPERATURE CONTROL 

The global system has three main blocks: the gas 
water heater, a micro-controller board and a personal 
computer.  The micro-controller board has three 
modules, all controlled by the flash-type micro-
controller PHILIPS 89C51RD. The Sensors and 
Actuators module is used to read and actuate the 
inputs and outputs of the system. The Security 
module that is used for the supervision and control 
of the security conditions. The Communication 
module that is used for the acquisition/monitoring of 
the system data to the personal computer.  

After a small description of the global system, it 
will be made a small description of the gas water 
heater system and its characteristics, for a detailed 
description see (Vieira el at. 2003) and it ends with 
the definition, identification and comparison of the 
proposed ASPC with the SPMSPC (Vieira el  at. 
2004a).  

5.1 System Description 

The gas water heater is a multiple input single output 
(MISO) system. The objective is to control the 
output water temperature, called hot water 
temperature (hwt). This variable depends of the cold 
water temperature (cwt), water flow (wf), gas flow 

(gf) (applied power) and the gas water heater 
dynamics. Considering that the cold water 
temperature is almost constant, the final objective is 
to control the delta water temperature (∆t) 
(difference between hot and cold water 
temperatures) reducing the number of inputs.  

Plant
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- +
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G(z)
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"Linearisation" of the plant
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RLS
with

RCM

Z
-td (k)

Z
-td (k)

The gas water heater is physically composed by a 
gas burner, a permutation chamber, a ventilator, two 
gas valves and several sensors used for control and 
security as shown on figure 5. Operating range of 
the hwt is from 30ºC to 60ºC. Operating range of the 
cwt is from 5ºC to 25ºC. Finally, the operating range 
of the water flow is from 3.5 to 14.5 litters/minute.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Burner

Permutation Chamber

Hot Water
Temperature

Sensor
NTC

Over Heat
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Spark

Ventilator

Exaution
Sensor

Water
Flow

Sensor

Ionization
Sensor

On-Off gas
 valve

Controlled  gas
valve

GasCold Water Hot Water

Cold Water
Temperature

Sensor
NTC

Figure 5: Gas Water heater circuit with its sensors 
and actuators. 

One of the main characteristics of the gas water 
heater is its Maximum static Power (MaxP).  The 
device used has 300 Kcal/min of maximum power. 
The MaxP depends on the physic characteristics of 
the permutation chamber and is given by the 
equation 13. 
 

( ) [ ]

[ ]Cº    
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MaxPtmax         Max(gf)gf

  withKcal/min  cwt-hwtt MaxP

=∆⇒=

∆=
 (13) 

 
The delta temperature is an unknown dynamic 

non-linear function h that depends of the latest 
samples of the gas flow, delta temperature and water 
flow. See equation 14:  
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Figure 6 shows the static gas water heater 

surface, where it is clear that there are two main 
variables that affect directly the delta temperature, 
which are the gas flow and the water flow, as 
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expected from equation 13. The relation between gas 
flow and the delta temperature presents a weak but 
important non-linearity for a specific water flow. 
However, the relation between water flow and the 
delta water temperature presents a strong non-
linearity for a specific gas flow. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The gas water heater plant presents a variant time 
delay. The variation of the time delay function td(t) 
depends mainly on the velocity of the water inside of 
the tubes in the permutation chamber. The time-
delay approximation function td(k) for the one 
second sampled system is illustrated in equation 15. 
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5.2 ASPC specific structure and on-
line model identification  

From empirical knowledge, heating systems are 
usually first order systems plus a time delay, based 
in this knowledge the dynamic linear part of the 
NFHM will be considered a first order dynamic 
function. Therefore, the dynamic linear model 
function is expressed in equation 16. 
 

td)-gf(k offunction linear -onntd)-nlgf(k
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=
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The non-linear gas flow nlgf(.) corresponds to the 

f(.) non-linear function in the NFHM. 
The ASPC is implemented in two steps: first, off-

line estimation of the non-linear static parameters 
and second, on-line identification of the linear 

dynamic parameters updating the direct and inverse 
models of the plant, as illustrated in figure 7. 
The Time-Delay Approximation Function updates 
on-line the time delay approximation as expressed in 
equation 15 and illustrated in figure 7. 
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Figure 6: Static characterization of the gas water 

heater 
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Figure 7: ASPC for the gas water heater. 

In this particular example the variable water flow, 
changes the time constant and the static gain of the 
system. Therefore, this static gain should be taking 
into account in the non-linear static function 
parameters calculation. The non-linear static 
parameters were calculated with a constant water 
flow of 9 l/m that gives a static gain of 0.873 (see 
training signal). The non-linear static function 
parameters calculated in (Vieira el at. 2004b) should 
be multiplied by the inverse of this particular static 
gain therefore this non-linear static parameters will 
be general for all water flow range. 

First step is the non-linear static inverse function 
parameters identification off-line. It was used a zero-
order TS fuzzy model implemented with three bell 
shaped fuzzy sets that impose three simple rules. 
With input universes of discourse normalized and 
using the training and test data sets used in the 
NFHM approach exposed in (Vieira el at., 2004b) 
the zero-order TS fuzzy model parameters are: 
aa1=0.274, bb1=1.614, cc1=-0.023, d1=0.1717, 
aa2=0.352, bb2=2.060, cc2=0.515, d2=0.666, 
aa3=0.407, bb3=2.125, cc3=1.008 and d3=1.249. 
 

After the non-linear static inverse function 
parameters calculus the initial linear parameters are 
calculated using the LS algorithm. The initial linear 
dynamic identification parameters found are 
a1=0.790 and b0=0.210. 

Finally, iteration-by-iteration, the linear dynamic 
parameters are recalculated, updating the proposed 
ASPC based in NFHMs. 
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5.3 Comparative results using the 
ASPC and SPMSPC 

For the comparison of the two controllers, ASPC 
and SPMSPC, the references hot water temperature  

and water flow variables were applied and the 
respective mean square errors (MSE) were 
calculated r(k-td)-y(k). It was used r(k-td) to avoid 
the error introduced by the time delay. The final 
results are expressed in table 1.  
 

000

000

000

000

000

000

Table 1: Mean square errors of the two controllers 
Algorithm MSE 
ASPC 1.858 
SPMSPC 1.953 

 
As can be seen from the results both architectures 

ASPC and SPMSPC achieve good results. But the 
SPMSPC approach is not an adaptive model 
controller approach, therefore, it can be seen in 
Figure 9 that there is an error between the direct 
model and the real plant. The cause that is 
responsible for the difference between the model and 
the plant is called load. This load induced a worst 
control performance. 

The ASPC approach is an adaptive model 
controller approach, therefore, it can be seen in 
Figure 8 that there is no load in the system. 
However, the control results are affected by the 
tuning time and variation of the linear parameters. 
In Figure 10 it can be seen that the linear dynamic 
parameters are similar in both controllers. The small 
differences observed became from the possible non-
optimal parameters achieved with the genetic 
algorithms in the SPMSP and from the on-line 
adaptation of the linear dynamic parameters with a 
continues variation of the time delay that was 
approximated to the discrete time by equation 15. 

6 CONCLUSIONS AND FUTURE 
WORK 

This work presents a new model based Smith 
predictive adaptive controller using Hammerstein 
neuro-fuzzy model identification. It presents a new 
and simple method for the neuro-fuzzy Hammerstein 
model on-line identification and its generalisation. 
The NFHM approach uses a zero-order Takagi-
Sugeno fuzzy model to approximate the non-linear 
static function that is tuned off-line using gradient 
decent algorithm and to identify the linear dynamic 
function it is used the Recursive Least Square on-
line estimation with Covariance Matrix Reset 
(RLSCMR). The CMR algorithm is used for a faster 
convergence of the identified parameters because if 
the load presents big changes the parameters should 
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Figure 8: ASPC results 
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Figure 9: SPMSPC results 
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Figure 10: On-line parameters variation. 
       (ASPC continues line and SPMSPC dot line).
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have a fast and stable change too, maintaining the 
robustness of the controller. 

Finally, the proposed ASPC and SPMSPC control 
approaches were successful applied to an illustrative 
example: gas water heater system. The ASPC 
achieve better control results than the SPMSPC 
because, even when the load (water flow / maximum 
power) changes the dynamic of the system, the 
linear parameters will adapt then selves. The 
SPMSPC was optimise for a fixed maximum power 
so if the maximum power changes the control results 
will be worse than the ones achieved with the ASPC. 
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