
zeros of (1) are i.o.d. zeros of (1). Of course,
ococ
)'C,'B,'A(Xdim)C,B,A(Xdim nn +==
∗∗
.
The zero dynamics in
are governed by
the equations
)'C,'B,'A(S
)t(xA)t(x
)t(uB)t(xA)t(xA)t(x
ocococ
ococ13ocococ
=
++=
&
&
,
where
0B
oc
≠ , and their solutions remain in
)'C,'B,'A(X}0x:'x{X
oc
'
o
∗
==∈=
n
R . If we
constrain initial conditions to the subspace
}0x,0x:'x{X
ococ
'
oc
==∈=
n
R , then in this part
of
'
o
X the zero dynamics are governed by
)t(uB)t(xA)t(x
ococococ
+=
&
.
The source of degeneracy of (14) (and consequently,
of (1)) lies in this part (i.e., controllable and
unobservable) of the system, since for any
)A(
oc
σ∉λ the triple
g,
0
0
x
x,
o
oc
o
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎣
⎡
=λ
,
with
gB)AI(x
oc
1
ococ
o
oc
−
−λ= and
oc
BKerg∉ ,
satisfies Definition 1(i) for
. )'C,'B,'A(S
6 CONCLUSION
The purpose of this paper was to discuss certain
geometric aspects of multivariable zeros that are not
commonly known from the relevant literature. The
presented approach can be extended on non strictly
proper systems.
REFERENCES
Basile, G., Marro, G., 1992. Controlled and Conditioned
Invariants in Linear System Theory, Prentice-Hall,
Englewood Cliffs, NJ.
Callier, F.M., Desoer, C.A., 1982. Multivariable Feedback
Systems, Springer Verlag, New York.
Chen, C.T., 1984. Linear System Theory and Design, Holt,
Rinehart and Winston, New York.
Emami-Naeini, A., Van Dooren, P., 1982. Computation of
zeros of linear multivariable systems, Automatica, vol.
18, pp. 415-430.
Gantmacher, F.R., 1988. Theory of Matrices, Nauka,
Moscow (in Russian).
Isidori, A., 1995. Nonlinear Control Systems, Springer-
Verlag, London.
Kalman, R. E., 1982. On the computation of the reachable/
observable canonical form, SIAM J. Contr. &Optimiz.,
vol. 20, pp. 258-260.
MacFarlane, A.G.J., Karcanias, N., 1976. Poles and zeros
of linear multivariable systems: A survey of the
algebraic, geometric and complex variable theory, Int.
J. Contr., vol. 24, pp. 33-74.
Misra, P., Van Dooren, P., Varga, A., 1994. Computation
of structural invariants of generalized state-space
systems, Automatica, vol. 30, pp. 1921-1936.
Marro, G., 1996. Multivariable regulation in geometric
terms: old and new results, Lecture Notes in Control
and Information Sciences, C. Bonivento, G. Marro, R
Zanasi, Eds, vol. 215, pp.77-138, Springer, London.
Marro, G., Ntogramatzidis, L., Prattichizzo, D., Zattoni,E.,
2002. Linear Control Theory in Geometric Terms,
CIRA Summer School „Antonio Ruberti”, Bertinoro,
Italy, July 15-20.
Rosenbrock, H. H., 1970. State Space and Multivariable
Theory, Nelson, London.
Rosenbrock, H.H., 1973. The zeros of a system, Int. J.
Contr., vol. 18, pp. 297-299.
Schrader, C.B., Sain, M.K., 1989. Research on system
zeros: A survey, Int. J. Contr., vol. 50, pp. 1407-1433.
Sontag, E.D., 1990. Mathematical Control Theory,
Springer-Verlag, New York.
Tokarzewski, J., 2000. A note on dynamical interpretation
of invariant zeros in MIMO LTI systems and algebraic
criterions of degeneracy, Int. Symp. MTNS, Perpignan,
June 19-23 (compact disc).
Tokarzewski, J., 2002a. Zeros in Linear Systems: a
Geometric Approach, Publishing House of the
Warsaw University of Technology, Warsaw.
Tokarzewski, J., 2002b. Relationship between Smith zeros
and invariant zeros in linear singular systems, Proc. of
the 8th IEEE Int. Conf. On Methods and Models in
Automation and Robotics, Sept. 2-5, Szczecin, Poland,
vol. I, pp. 71-74.
Wonham, W.M., 1979. Linear Multivariable Control: a
Geometric Approach, Springer-Verlag, New York.
ZEROS, OUTPUT-NULLING SUBSPACES AND ZERO DYNAMICS IN MIMO LTI SYSTEMS
121