End Condition: A new timeline has been proposed
and a new plan is sent to Data-Base, else, an Alarm is
sent to the Human Agent (User).
Description: This conversation permits the
information search on the Data-Base about the
maintenance tasks that have not put up and running
(Expecting Tasks)
4.5 tion Model
been defined
and they are suitably arranged into the conversations
Spe king Interaction: Expecting Maintenance Tasks
Communica
A set of 21 speaking interaction has
in the Coordination Model. In the case of the
previous conversation Maintenance Plan
Redefinition, the following speaking interactions are
performed: Expecting Maintenance Tasks Search
(Table 6), Alarm and Maintenance Plan Sending
Table 6: Speaking Interaction
a
Search.
Type: Query.
Objective: To search in the Data-Base the expecting
maintenance tasks that have not executed on the process.
Agents: Coordinator, Data-Base (MAS-based
Middleware)
Beginner oordinator Agent. : C
Precondition: An active flag about expecting tasks.
End Condition: The Coordinator Agent receives, from the
Data-Base Agent, the whole information about the
expecting tasks.
Conversations: Maintenance Plan Redefinition, Urgent
Maintenance Tasks.
Description: The Coordinator Agent requests the whole
information about the expecting tasks reported by the
Observer Agent.
4.6 Conclusions
tion and analysis of a Multi-
Agents System-based reference model for Fault
In this work, the concep
Management System has been proposed. This model
has been developed into a generic framework
proposed for Intelligent Distributed Control
Systems. In this sense, the system performs a set of
tasks (actions) permitting the maintenance tasks
planning and the application of specific maintenance
tasks as fault detection, isolation, diagnosis and
prediction. The enhanced methodology MASINA
has provided a set of models permitting to describe
the main characteristics of the MAS. The resulting
models have a generic structure that permits to
incorporate it into the automation process of a
distributed control systems.
REFERENCES
T.J Williams, P. Bernous, J Brosvic, D. Chen, G,
Doumeingts, 1994. Architectures for integrating
manufacturing activities and enterprises, Computer in
Industry 24, pp.11-39.
C. Iglesias, 1998. Definición de una metodología para el
desarrollo de sistemas multiagentes, Ph.D Thesis,
Dpto. de Ingeniería de Sistemas Telemáticos,
Universidad Politécnica de Madrid-España.
G. Weiss, 1999. "Multiagent Systems". The MIT Press.
Massachusets, USA.
J. Aguilar, M. Cerrada, F. Hidrobo, G. Mousalli, F. Rivas,
2001. Application of the Agent Reference Model for
Intelligent Distributed Control System, in: N.
Mastorakis and L. Pecorelli-Peres (Eds.), “Advances
in System Sciences: Measurements, Circuits and
Control”, p.p. 204-210, WSES Press.
B. Waterbury, 2002. Artificial Intelligence Expands
Frontiers in Asset Management, Control Magazine.
J. Aguilar, G. Mousalli, V. Bravo y H. Díaz, 2002.
Agentes de control y de gestión de servicio para el
modelo de referencia SCDIA, Memorias del II
Simposio Internacional de Automatización y Nuevas
Tecnologías, TECNO2002, pp. 45-50, Mérida-
Venezuela.
M. Cerrada, J. Aguilar, J Cardillo, R. Faneite, 2003.
Agent-based reference model for fault management,
technical report, Grant Project I-621-98-02-
A,CDCHT-ULA, Mérida-Venezuela.
C. Bravo, J. Aguilar, F. Rivas, M. Cerrada.2003. Diseño
de una Arquitectura de Automatización Industrial
Basada en Sistemas Multiagentes. Memorias del IV
Congresos de Automatización y Control CAC’2003.
Universidad de los Andes. Mérida-Venezuela.
J. Aguilar, M. Cerrada, F. Hidrobo, F. Rivas, 2004.
Especificación detallada de los agentes del SCDIA,
Technical Report, Grant Project Agenda Petróleo No.
97003817, CEMISID-Universidad de Los Andes.
Mérida-Venezuela.
MULTI-AGENTS BASED REFERENCE MODEL FOR FAULT MANAGEMENT SYSTEM IN INDUSTRIAL
PROCESSES
345