- two degrees of mobility, nine links and eleven
joints ,
- three degrees of mobility, ten links and twelve
joints.
In the majority of cases the kinematic structure
has axial symmetry. This symmetry is not mentioned
in the tables presented. However, the central
symmetry (not as much presented in the structures)
is mentioned, as previously stated in paragraph 6.1.
Table 3: Frame and the end-effector choices.
Structures with one degree of mobility, eight links and ten joints
n°
N
s
n
s
c
N
s
c
n
s
p
n
c
F
c
E
c
182242 0 214
280000 0 856
380000 0 856
481240 2 529
581240 2 529
681002 0 321
781250 4 210
880000 0 856
982250 4 315
10 8 0 0 0 0 0 8 56
11 8 0 0 0 0 0 8 56
12 8 1 0 0 0 2 5 29
13 8 1 2 5 0 2 6 34
14 8 1 2 4 2 2 4 16
15 8 2 2 4 2 4 3 17
16 8 1 2 5 0 2 5 29
tota l tota l
83 518
7 SUMMARY
The method presented in this paper enables the
morphological restriction for planar kinematic
mechanisms in robotics by avoiding those that are
isomorphic. It is based on the exploitation of
symmetries. The different cases of symmetry studied
provide expressions allowing the number of possible
structures to be calculated as regards the position of
the frame and of the end-effector. The proposed
expressions are then applied to different examples.
The results of this study may be useful to robot-
designers enabling them to limit the field of research
to the possible solutions.
REFERENCES
Chedmail, P., Ramstein E., 1995. Synthèse des
mécanismes et algorithmes génétiques, Journée
PRIMECA, Toulouse, pp.7-14.
Crossley, F. R. E., 1964. A cotribution to Grubler's theory
in the number synthesis of plane mechanisms, ASME,
Journal of Engineering for Industry, pp.1-8.
Crossley, F. E., 1966. On an unpublished work of alt, Jour.
Mechanisms,
1, pp.165-170.
Davies, T., Crossley F.E., 1966. Structural analysis of plan
linkages by Franke’s condensed notation, Jour.
Mechanisms,
1, pp.171-183, Pergamon Press.
Dobrjanskyi, L., Freudenstein, F., 1967. Some application
of graph theory to the structural analysis of
mechanisms, Journal of Engineering for Industry,
pp.153-158.
Ferreti, M., 1981. Panorama de 150 manipulateurs et
robots industriels, Le Nouvel Automatisme, n°
26,
Novembre-Décembre 1981, pp.56-77.
Hervè, L.M., 1982. Intrinsic formulation of problems of
geometry and kinematics of mechanisms, Mech. and
Mach. Theory,
17, N° 3 , pp.179-184.
Hwang, W-M., Hwang, Y-W., 1992. Computer-aided
structural synthesis of plan kinematic chains with
simple joints, Mech. Mach. Theory,
27, n°2, pp.189-
199.
Manolescu, N. et al., 1987. Structural and Kinematic
Synthesis of Planar Kinematic Chain (PKC) and
Mechanisms (PM) with Variable Structure During the
Work, Proc. of the 7-th World Congress, The Theory
of Mechines and Mechanisms,
1, 17-22 September
1987, Sevilla, Spain, pp. 45-48.
Mitrouchev P., André P. , 1999. Méthode de génération et
description de mécanismes cinématiques plans en
robotique. Journal Européen des Systèmes
Automatisés, ISSN : 0296-1598, (vol. 33, n°3) - avril
1999, pp. 285-304.
Mruthyunjaya, T.S., 1984a. A computerized methodology
for structural synthesis of kinematic chains : Part 1-
Formulation, Mech. Mach. Theory,
19, No.6, pp. 487-
495.
Mruthyunjaya, T.S., 1984b. A computerized methodology
for structural synthesis of kinematic chains : Part 2-
Application to several fully or partially known cases,
Mech. Mach. Theory,
19, No.6, pp. 497-505.
Woo, L. S., 1967. Type synthesis of plan linkages, Journal
of Engineering for Industry, February 1967, pp.159-
172.
Yannou B.,Vasiliu, A., 1997. Synhèse dimensionnelle de
mécanismes générateurs de trajectoires par réseaux de
neurones, 5
-ème
Colloque PRIMECA, La Plagne,
1997, pp.315-323.
ICINCO 2004 - ROBOTICS AND AUTOMATION
200