ACTIVE SENSING STRATEGIES FOR ROBOTIC PLATFORMS, WITH AN APPLICATION IN VISION-BASED GRIPPING
Benjamin Deutsch, Frank Deinzer, Matthias Zobel, Joachim Denzler
2004
Abstract
We present a vision-based robotic system which uses a combination of several active sensing strategies to grip a free-standing small target object with an initially unknown position and orientation. The object position is determined and maintained with a probabilistic visual tracking system. The cameras on the robot contain a motorized zoom lens, allowing the focal lengths of the cameras to be adjusted during the approach. Our system uses an entropy-based approach to find the optimal zoom levels for reducing the uncertainty in the position estimation in real-time. The object can only be gripped efficiently from a few distinct directions, requiring the robot to first determine the pose of the object in a classification step, and then decide on the correct angle of approach in a grip planning step. The optimal angle is trained and selected using reinforcement learning, requiring no user-supplied knowledge about the object. The system is evaluated by comparing the experimental results to ground-truth information.
References
- Bar-Shalom, Y. and Fortmann, T. (1988). Tracking and Data Association. Academic Press, Boston, San Diego, New York.
- Bertsekas, D. P. (1995). Dynamic Programming and Optimal Control. Athena Scienti c, Belmont, Massachusetts. Volumes 1 and 2.
- Bicchi, A. and Kumar, V. (2000). Robotic grasping and contact: A review. In Proceedings of the 2000 IEEE International Conference on Robotics and Automation, volume 1, pages 348-353, San Francisco.
- Borotschnig, H., Paletta, L., Prantl, M., and Pinz, A. (2000). Appearance-based active object recognition. Image and Vision Computing, 18(9):715-727.
- Deinzer, F., Denzler, J., and Niemann, H. (2003). Viewpoint Selection - Planning Optimal Sequences of Views for Object Recognition. In Computer Analysis of Images and Patterns - CAIP 2003, LNCS 2756, pages 65-73, Heidelberg. Springer.
- Denzler, J. and Brown, C. (2002). Information Theoretic Sensor Data Selection for Active Object Recognition and State Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(2):145-157.
- Denzler, J., Zobel, M., and Niemann, H. (2003). Information Theoretic Focal Length Selection for Real-Time Active 3-D Object Tracking. In International Conference on Computer Vision, pages 400-407, Nice, France. IEEE Computer Society Press.
- Grzegorzek, M., Deinzer, F., Reinhold, M., Denzler, J., and Niemann, H. (2003). How Fusion of Multiple Views Can Improve Object Recognition in Real-World Environments. In Vision, Modeling, and Visualization 2003, pages 553-560, München. Aka GmbH, Berlin.
- Hager, G. and Belhumeur, P. (1998). Ef cient region tracking with parametric models of geometry and illumination. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(10):1025-1039.
- Mason, M. (2001). Mechanics of Robotic Manipulation. MIT Press. Intelligent Robotics and Autonomous Agents Series, ISBN 0-262-13396-2.
- Paletta, L. and Pinz, A. (2000). Active Object Recognition by View Integration and Reinforcement Learning. Robotics and Autonomous Systems, 31(1-2):71-86.
- Puckelsheim, F. (1993). Optimal Design of Experiments. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York.
- Shannon, C. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27:379- 423,623-656.
- Smith, C. and Papanikolopoulos, N. (1996). Vision-guided robotic grasping: Issues and experiments. In Proceedings of the 1996 IEEE International Conference on Robotics and Automation, pages 3203-3208.
- Sutton, R. and Barto, A. (1998). Reinforcement Learning. A Bradford Book, Cambridge, London.
- Tordoff, B. and Murray, D. (2001). Reactive Zoom Control while Tracking Using an Af ne Camera. In Proceedings of the 12th British Machine Vision Conference, volume 1, pages 53-62.
- Zobel, M., Denzler, J., and Niemann, H. (2002). Binocular 3-D Object Tracking with Varying Focal Lengths. In Proceedings of the IASTED International Conference on Signal Processing, Pattern Recognition, and Application, Crete, Greece, pages 325-330, Anaheim, Calgary, Zurich. ACTA Press.
Paper Citation
in Harvard Style
Deutsch B., Deinzer F., Zobel M. and Denzler J. (2004). ACTIVE SENSING STRATEGIES FOR ROBOTIC PLATFORMS, WITH AN APPLICATION IN VISION-BASED GRIPPING . In Proceedings of the First International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 972-8865-12-0, pages 169-176. DOI: 10.5220/0001140901690176
in Bibtex Style
@conference{icinco04,
author={Benjamin Deutsch and Frank Deinzer and Matthias Zobel and Joachim Denzler},
title={ACTIVE SENSING STRATEGIES FOR ROBOTIC PLATFORMS, WITH AN APPLICATION IN VISION-BASED GRIPPING},
booktitle={Proceedings of the First International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2004},
pages={169-176},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001140901690176},
isbn={972-8865-12-0},
}
in EndNote Style
TY - CONF
JO - Proceedings of the First International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - ACTIVE SENSING STRATEGIES FOR ROBOTIC PLATFORMS, WITH AN APPLICATION IN VISION-BASED GRIPPING
SN - 972-8865-12-0
AU - Deutsch B.
AU - Deinzer F.
AU - Zobel M.
AU - Denzler J.
PY - 2004
SP - 169
EP - 176
DO - 10.5220/0001140901690176