
is applied to the original system. In this the higher
order system is reduced to a lower order model. A
stabilizing passive low order controller for the sta-
ble reduced order model is designed, which when ap-
plied to original higher order passive system results
in a stable closed loop. Though, the proposed method
is applied for the order reduction in this paper, any
stability-preserving system reduction method can be
applied for this purpose.
REFERENCES
R. Sepulchre, M. Jankovic, and P. V. Kokotovic, (1997).
Constructive nonlinear control, communication and
control engineering. Springer-Verlag London.
E. A. Guillemin, (1957). Synthesis of passive networks New
York, NY: Jhon Willey and Sons Inc.
D. Hazony, (1963).Elements of network synthesis.Reinhold
Publishing Corporation, Newyork.
B. Peikari, (1974). Fundamentals of network analysis and
synthesis. Prentice Hall, Englewood Cliffs, New Jer-
sey.
W. C. Yengst, (1964). Procedures of modern network syn-
thesis.Collier-Macmillan Limited, London.
G. Obinata and B. D. O. Anderson, (2001). Model reduc-
tion for control system designSpringer-Verlag London
Limited.
S. P. Bhattacharya, H. Chapellat and L. H. Keel,(1995).Ro-
bust control: the parametric approach. Upper Saddle
River,Prentice-Hall PTR.
B. Bandyopadhyay, Unbehauen and B. M. Patre, (1998).
A new algorithm for compensator design for higher
order system via reduced model. Automatica Vol. 34,
No. 7.
G. Schmitt-Braess, (2003). Feedback of passive sys-
tems:synthesis and analysis of linear robust control
systems. IEE Proc.-Control Theory Apply., Vol. 150,
No. 1.
S. S. Lamba and S. V Rao, (1974). On suboptimal control
via the simplified model of the Davison. IEEE Trans.
Automat. Control,AC-9, pp 448-450.
M. R. Chidambara and R. B. Sancher, (1974). Low order
Generalized Aggrigated Model and Suboptimal Con-
trol.IEEE Trans. on Automat. Control., April 1975, pp
175-180.
A. J. van der schaft, (1999),
2
-Gain and passivity tech-
niques in nonlinear control, communication and con-
trol engineering. Springer-Verlag, Heidelberg, 2nd
edition.
R. Lozano-leal and S. M. Joshi, (1988), On the design
of dissipative LQG-type controllers, Proceedings of
the 27th conference on decision and control, Austin,
Texas.
B. Bandyopadhyay and H. Unbehauen, (1999), Interval sys-
tem reduction using kharitnov polynomials. In Euro-
pean control conference, Karlsruhe, Germany.
Y. Shamash, (1974). Stable reduced order model using pade
type approximation. In IEEE Trans. Automatic Con-
trol, AC-19, pp. 615-616.
Y. Shamash, (1975). Model Reduction using the Routh Sta-
bility Criterion and the Pade Approximation Tech-
nique.In Int. J. Control, Vol. 21, No. 3,475-484.
M. F. Hutton and B. Friedland, (1975). Routh approxima-
tion for reducing order of linear time invariant sys-
tem.In IEEE Trans. on Automatic Control, AC-20, pp.
329-337.
John T. Wen, (1988). Time domain and frequency domain
conditions for strict positive realness. In IEEE Trans.
on Automatic control, Vol. 33, No. 10.
R. Lozano-Leal and S. M. Joshi, (1990). Strictly positive
real transfer functions revisited.In IEEE Trans. on Au-
tomatic control, Vol. 35, No. 11.
G. Tao and P. A. Ioannou, (1990). Necessary and sufficient
conditions for strictly positive real matrices. In IEE
Proc. on Control Theory and Apply., Vol. 137, Oct.
1990, pft G. No 5, pp 360-366.
N. K. Sinha and W. Pille, (1971).A new method for reduc-
tion of dynamic systems. In Int. J. of Control, Vol. 14,
No. 1,111-118.
N. K. Sinha and Kuszta, (1983). Modelling and Identifi-
cation of Dynamic Systems. New York Van Nostrand
Reinhold, Ch. 8 pp 133-164.
A. Lepschy and U. Viaro, (1982). An improvement in the
Routh-pade approximation technique. In Int. J. Con-
trol, Vol. 36, No. 4,643-661.
M. Vidyasagar, (1983). Nonlinear systems. Prentice Hall,
Engle Wood Cliffs, New Jersey.
P. Shingare, B. Bandyopadhyay and H. K. Abhyankar,
(2003), Model order reduction technique based on in-
terlacing property and pade approximation. In Pro-
ceedings of 27th National Systems Conference, IIT
Kharagpur, India, pp 50-54.
P. Shingare and H. K. Abhyankar, (2003). Hermite-
Biehler Method for System Reduction Preserving Sta-
bility. In Proceedings of International Conference on
CAD/CAM, Robotics and Autonomous Factories, IIT
Delhi, India.
STABILIZING CONTROL FOR HIGHER ORDER SYSTEMS VIA REDUCED ORDER MODEL - A PASSIVITY
BASED APPROACH
129