
3000 6000 9000 12000 15000 18000 21000 24000 27000 30000
0
0.01
0.02
0.03
0.04
0.05
0.06
Tai Chi #7
Tai Chi #7 without balance check
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
time(ms)
imbalance(m^2)
original posture from the Tai Chi tutorial
intermediate posture by balance checker
Figure 9: The imbalance of Tai Chi #7.
0.01
0.02
0.03
0.04
0.05
0.06
3000 4500 6000 7500 9000 10500 12000 13500 15000 16500
Tai Chi #17
Tai Chi #17 without balance check
1 2 3
4
5
6
7
8 9
10
time(ms)
imbalance(m^2)
original posture from the Tai Chi tutorial
intermediate posture by balance checker
Figure 10: The imbalance of Tai Chi #17.
REFERENCES
Defang, L. (1999). Introduction to Tai Chi consist of 48
motions. BAB Japan.
Huang, Q., Yokoi, K., Kajita, S., Kaneko, K., Arai, H., Koy-
achi, N., and Tanie, K. (2001). Planning walking pat-
terns for a biped robot. IEEE Transactions on robotics
and automation, 17(3).
Kagami, S., Kanehiro, F., Tamiya, Y., Inaba, M., and In-
oue, H. (2001). Autobalancer: An online dynamic
balance compensation scheme for humanoid robots.
In Robotics: The Algorithmic Perspective, Workshop
on Algorithmic Foundations on Robotics, pages 329–
340.
Kuffner, J. J., Nishiwaki, K., Kagami, S., Inaba, M., and In-
oue, H. (2001). Motion planning for humanoid robots
under obstacle and dynamic balance constraints. In
Proc. of the IEEE Int’l Conf. on Robotics and Automa-
tion (ICRA’2001), pages 692–698.
Kuffner, J. J., Nishiwaki, K., Kagami, S., Kuniyoshi, Y.,
Inaba, M., and Inoue, H. (2002). Self-collision de-
tection and prevention for humanoid robots. In Proc.
0.01
0.02
0.03
0.04
0.05
0.06
3000 4500 6000 7500 9000 10500 12000 13500 15000 16500 18000 19500 21000
Tai Chi #44
Tai Chi #44 without balance check
1
2
3
4
5 6
7
8
9
10
11
12
13
time(ms)
imbalance(m^2)
original posture from the Tai Chi tutorial
intermediate posture by balance checker
Figure 11: The imbalance of Tai Chi #44.
of the IEEE Int’l Conf. on Robotics and Automation
(ICRA’2002), pages 2265–2270.
Kuwayama, K., Kato, S., Seki, H., Yamakita, T., and Itoh,
H. (2003). Motion control for humanoid robots based
on the concept learning. In Proc. of International Sym-
posium on Micromechatoronics and Human Science,
pages 259–263.
Li, Q., Takanishi, A., and Kato, I. (1993). Learning control
for a biped walking robot with a trunk. In Proc. of
the IEEE/RSJ International Conference on Intelligent
Robot and Systems, page 1771.
Murase, Y., Yasukawa, Y., Sakai, K., and et al. (2001).
Design of a compact humanoid robot as a plat-
form. In Proc. of the 19-th conf. of Robotics
Society of Japan, pages 789–790. (in Japanese),
http://pr.fujitsu.com/en/news/2001/09/10.html.
Nishiwaki, K., Kagami, S., Kuniyoshi, Y., Inaba, M., and
Inoue, H. (2002). Online generation of humanoid
walking motion based on a fast generation method of
motion pattern that follows desired zmp. In Proc. of
the 2002 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pages 2684–2689.
Sugihara, T., Nakamura, Y., and Inoue, H. (2002). Realtime
humanoid motion generation through zmp manipula-
tion based on inverted pendulum control. In Proc. of
IEEE International Conference on Robotics and Au-
tomation (ICRA2002), volume 2, pages 1404–1409,
Washington D.C., U.S.A.
Yamaguchi, J., Takanishi, A., and Kato, I. (1993). De-
velopment of biped walking robot compensating for
three-axis moment by trunk motion. In Proc. of
the IEEE/RSJ International Conference on Intelligent
Robot and Systems, page 561.
A INTERPOLATION-BASED APPROACH TO MOTION GENERATION FOR HUMANOID ROBOTS
47