ITERATIVE LINEAR QUADRATIC REGULATOR DESIGN FOR NONLINEAR BIOLOGICAL MOVEMENT SYSTEMS

Weiwei Li, Emanuel Todorov

2004

Abstract

This paper presents an Iterative Linear Quadratic Regulator (ILQR) method for locally-optimal feedback control of nonlinear dynamical systems. The method is applied to a musculo-skeletal arm model with 10 state dimensions and 6 controls, and is used to compute energy-optimal reaching movements. Numerical comparisons with three existing methods demonstrate that the new method converges substantially faster and finds slightly better solutions.

References

  1. Brown, I. E., Cheng, E. J., and Leob, G. (1999). Measured and modeled properties of mammalian skeletal muscle. ii. the effects of stimulus frequency on forcelength and force-velocity relationships. J. of Muscle Research and Cell Motility, 20:627-643.
  2. Bryson, A. E. and Ho, Y.-C. (1969). Applied Optimal Control. Blaisdell Publishing Company, Massachusetts, USA.
  3. Harris, C. and Wolpert, D. (1998). Signal-dependent noise determines motor planning. Nature, 394:780-784.
  4. Jacobson, D. H. and Mayne, D. Q. (1970). Differential Dynamic Programming. Elsevier Publishing Company, New York, USA.
  5. Lahdhiri, T. and Elmaraghy, H. A. (1999). Design of optimal feedback linearizing-based controller for an experimental exible-joint robot manipulator. Optimal Control Applications and Methods, 20:165-182.
  6. Lewis, F. L. and Syrmos, V. L. (1995). Optimal Control. John Wiley and Sons, New York, USA.
  7. Todorov, E. (2003). On the role of primary motor cortex in arm movement control. In Progress in Motor Control III, pages 125-166, Latash and Levin(eds), Human Kinetics.
  8. Todorov, E. and Jordan, M. (2002). Optimal feedback control as a theory of motor coordination. Nature Neuroscience, 11(5):1226-1235.
  9. Todorov, E. and Li, W. (2003). Optimal control methods suitable for biomechanical systems. In Proceedings of the 25th IEEE Conference on Engineering in Medicine and Biology Society, Cancun, Mexico.
  10. Y, U., M, K., and R, S. (1989). Formation and control of optimal trajectory in human multijoint arm movement - minimum torque-change model. Biological Cybernetics, 61:89-101.
Download


Paper Citation


in Harvard Style

Li W. and Todorov E. (2004). ITERATIVE LINEAR QUADRATIC REGULATOR DESIGN FOR NONLINEAR BIOLOGICAL MOVEMENT SYSTEMS . In Proceedings of the First International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 972-8865-12-0, pages 222-229. DOI: 10.5220/0001143902220229


in Bibtex Style

@conference{icinco04,
author={Weiwei Li and Emanuel Todorov},
title={ITERATIVE LINEAR QUADRATIC REGULATOR DESIGN FOR NONLINEAR BIOLOGICAL MOVEMENT SYSTEMS},
booktitle={Proceedings of the First International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2004},
pages={222-229},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001143902220229},
isbn={972-8865-12-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the First International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - ITERATIVE LINEAR QUADRATIC REGULATOR DESIGN FOR NONLINEAR BIOLOGICAL MOVEMENT SYSTEMS
SN - 972-8865-12-0
AU - Li W.
AU - Todorov E.
PY - 2004
SP - 222
EP - 229
DO - 10.5220/0001143902220229