ITERATIVE LINEAR QUADRATIC REGULATOR DESIGN FOR NONLINEAR BIOLOGICAL MOVEMENT SYSTEMS
Weiwei Li, Emanuel Todorov
2004
Abstract
This paper presents an Iterative Linear Quadratic Regulator (ILQR) method for locally-optimal feedback control of nonlinear dynamical systems. The method is applied to a musculo-skeletal arm model with 10 state dimensions and 6 controls, and is used to compute energy-optimal reaching movements. Numerical comparisons with three existing methods demonstrate that the new method converges substantially faster and finds slightly better solutions.
References
- Brown, I. E., Cheng, E. J., and Leob, G. (1999). Measured and modeled properties of mammalian skeletal muscle. ii. the effects of stimulus frequency on forcelength and force-velocity relationships. J. of Muscle Research and Cell Motility, 20:627-643.
- Bryson, A. E. and Ho, Y.-C. (1969). Applied Optimal Control. Blaisdell Publishing Company, Massachusetts, USA.
- Harris, C. and Wolpert, D. (1998). Signal-dependent noise determines motor planning. Nature, 394:780-784.
- Jacobson, D. H. and Mayne, D. Q. (1970). Differential Dynamic Programming. Elsevier Publishing Company, New York, USA.
- Lahdhiri, T. and Elmaraghy, H. A. (1999). Design of optimal feedback linearizing-based controller for an experimental exible-joint robot manipulator. Optimal Control Applications and Methods, 20:165-182.
- Lewis, F. L. and Syrmos, V. L. (1995). Optimal Control. John Wiley and Sons, New York, USA.
- Todorov, E. (2003). On the role of primary motor cortex in arm movement control. In Progress in Motor Control III, pages 125-166, Latash and Levin(eds), Human Kinetics.
- Todorov, E. and Jordan, M. (2002). Optimal feedback control as a theory of motor coordination. Nature Neuroscience, 11(5):1226-1235.
- Todorov, E. and Li, W. (2003). Optimal control methods suitable for biomechanical systems. In Proceedings of the 25th IEEE Conference on Engineering in Medicine and Biology Society, Cancun, Mexico.
- Y, U., M, K., and R, S. (1989). Formation and control of optimal trajectory in human multijoint arm movement - minimum torque-change model. Biological Cybernetics, 61:89-101.
Paper Citation
in Harvard Style
Li W. and Todorov E. (2004). ITERATIVE LINEAR QUADRATIC REGULATOR DESIGN FOR NONLINEAR BIOLOGICAL MOVEMENT SYSTEMS . In Proceedings of the First International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 972-8865-12-0, pages 222-229. DOI: 10.5220/0001143902220229
in Bibtex Style
@conference{icinco04,
author={Weiwei Li and Emanuel Todorov},
title={ITERATIVE LINEAR QUADRATIC REGULATOR DESIGN FOR NONLINEAR BIOLOGICAL MOVEMENT SYSTEMS},
booktitle={Proceedings of the First International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2004},
pages={222-229},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001143902220229},
isbn={972-8865-12-0},
}
in EndNote Style
TY - CONF
JO - Proceedings of the First International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - ITERATIVE LINEAR QUADRATIC REGULATOR DESIGN FOR NONLINEAR BIOLOGICAL MOVEMENT SYSTEMS
SN - 972-8865-12-0
AU - Li W.
AU - Todorov E.
PY - 2004
SP - 222
EP - 229
DO - 10.5220/0001143902220229