
We also note that this approach offers many
advantages to deal with complex models.
Developing these polynomials to evaluate models
facilitates modeling any kind of systems. This new
tool can be used as basis for further studies on
scheduling.
REFERENCES
Bacelli, F., Cohen, G., Olsder, G.J., Quadrat, J.P. (1992).
Synchronisation and linearity : An algebra for
discrete Event Systems. John Wiley and Sons, New
York.
Baptiste, P., Legeard, B. (1993). Optimisation with
constraint logic programming : The Hoist scheduling
problem solved with various solvers. 8th
International Conference on Applications of
Artificial Intelligence in Engineering, AIENG/93,
Toulouse, France.
Bloch, C. (1999). Contribution à l'ordonnancement
dynamiques de lignes de traitement de surface.
Thèse de Doctorat, Laboratoire d'Automatique de
Besançon (UMR CNRS 6596), Université de
Franche-Comté.
Borevitch, Z-I., Chafarevitch, I-R (1967). Théorie des
Nombres, (Gauthier-Villars), Paris.
Bourcerie, M., Morel, J-Y. (1997). Algebraically
structured coloured Petri nets to model sequential
processes. IEEE Transactions on Systems, Man and
Cybernetics, Part B : Cybernetics, Vol. 27, n°4.
Cohen, G., Dubois, Quadrat, J.P., Viot, M. (1985). A
linear system theoric view of discret-event processes
and its use for performance evaluation in
manufacturing. IEEE Trans. Automatic Control, 30 :
210-220.
Cohen, G., Moller, P.,Quadrat, J.P.,Viot, M.,: Algebraic
tools for the performance evaluation of discrete
event systems. Proceeding of the IEEE, Vol.77, pp.
39-58, 1989.
Gaubert, S. (1992). Théorie des systèmes linéaires dans
les dioïdes. Thèse de doctorat, Ecole des mines de
Paris.
Mabed, M. (2002).Thèse de doctorat intitulée,
Utilisation de l’Algèbre (Max, +) et des réseaux de
Petri Z/pZ dans l’étude d’un processus industriel.
Université d’Angers, octobre 2002.
Mabed, M., Bourcerie, M., Bousseau, F. (2001). Z/pZ
Petri nets model with application to an electroplating
line. IEEE International Conference on Systems,
Man and Cybernetics october 7-10, 2001, Tucson,
Arizona, USA.
Mabed, M., Bourcerie, M. (2003). Real-time model for
processing both scheduling and petri nets
approaches. European Simulation and Modelling
conference ESMC’03, October 27-29, 2003, Italy.
Marteau, S., Bourcerie, M. (1995).Complex sequencing
by methods of interpolation in Z/pZ colored Petri
nets, 4th International Conference on Emerging
Technologies and Factory Automation INRIA /
IEEE ETFA'95, p 573-581, France.
Marteau, S., Bourcerie, M. (1996). Dynamic evolution of
Z/pZ colored Petri nets models. In : Computational
Engineering in Systems Applications, Symposium
on Discrete Events and Manufacturing Systems
(IEEE-SMC CESA'96), p. 48-52, Lille, France.
Proth, J-M. Xie, X.(1994) Les réseaux de Petri pour la
conception et la gestion de systèmes de production,
Masson, Paris.
Spacek, P. (1998). Modélisation, analyse et commande
des systèmes à événements discrets par l'algèbre des
dioïdes, Application aux lignes de galvanoplastie.
Thèse de troisième cycle, Université de Franche
Comté
ICINCO 2004 - ROBOTICS AND AUTOMATION
284