Table 3: Compression Results.
JPEG-LS JPEG2000 LPVQ LPVQ-PREV LP SLSQ
Cuprite 2.09 1.91 3.13 3.18 3.03 3.15
Jaspder Ridge 2.00 1.80 2.82 2.88 2.94 3.15
Low Altitude 2.14 1.96 2.89 2.94 2.76 2.98
Lunar Lake 1.99 1.82 3.23 3.28 3.05 3.15
Moffett Field 1.91 1.78 2.94 3.00 2.88 3.14
AVERAGE 2.03 1.85 3.00 3.06 2.93 3.12
Table 4: Improvements of baseline LP and SLSQ algorithms.
LP-CTX SLSQ
Differential
JPEG-LS
Differential
JPEG2000
IB =
Σ-{1…8}
60% OPT 60% OPT
Cuprite 2.91 2.92 3.04 3.07 3.09 3.23 3.24
Jasper Ridge 2.81 2.82 2.96 2.98 3.00 3.22 3.23
Low Altitude 2.70 2.69 2.79 2.79 2.83 3.02 3.04
Lunar Lake 2.93 2.94 3.06 3.08 3.10 3.23 3.23
Moffett Field 2.84 2.83 2.93 2.94 2.96 3.20 3.21
AVERAGE 2.84 2.84 2.96 2.97 3.00 3.18 3.19
We are currently working to improve the
inter-band predictor and perform a formal analysis
of the remaining correlation after prediction, in order
to find suitable context modeling mechanisms that
will indubitably improve current performances.
Near-lossless extensions are also under
consideration.
REFERENCES
Abousleman, G. P. (1995). Compression of hyperspectral
imagery using hybrid DPCM/DCT and entropy
constrained trellis coded quantization. In Storer, J. A.
and Cohn, M., editors, Proceedings Data Compression
Conference, pages 322–331. IEEE Computer Society
Press.
Abousleman, G. P., Lam, T.-T., and Karam, L. J. (2002).
Robust hyperspectral image coding with
channeloptimized trellis-coded quantization. IEEE
Transactions on Geoscience and Remote Sensing,
40(4):820–830.
Aiazzi, B., Alparone, L., and Baronti, S. (2001).
Nearlossless compression of 3-D optical data. IEEE
Transactions on Geoscience and Remote Sensing,
39(11):2547–2557.
Barequet, R. and Feder, M. (1999). SICLIC: A simple
intercolor lossless image coder. In Storer, J. A. and
Cohn, M., editors, Proceedings of the Data
Compression Conference, pages 501–510, Snowbird,
Utha. IEEE Computer Society Press.
Brunello, D., Calvagno, G., Mian, G. A., and Rinaldo, R.
(2002). Lossless video coding using optimal 3D
prediction. In Proceedings of the 9th IEEE
International Conference on Image Processing (ICIP
2002), volume 1, pages 89–92, Rochester, NY. IEEE
Signal Processing Society.
CCSDS (1997). Consulting Committee for Space Data
Systems, ”Recommendation for space data system
standards: Lossless data compression”. CCSDS
121.0-B-1, Blue Book.
Gabow, H. N., Galil, Z., Spencer, T., and Tarjan, T. R.
(1986). Efficient algorithms for finding minimum
spanning trees in undirected and directed graphs.
Combinatorica, 6(2):109–122.
Gong, Y., Fan, M. K. H., and Huang, C.-M. (2000). Image
compression using lossless coding on VQ indexes. In
Storer, J. A. and Cohn, M., editors, Proceedings of the
Data Compression Conference, page 583, Snowbird,
Utha. IEEE Computer Society Press.
Manohar, M. and Tilton, J. C. (2000). Browse level
compression of AVIRIS data using vector quantization
on massively parallel machine. In Proceedings AVIRIS
Airborne Geoscience Workshop.
Mielikäinen, J., Kaarna, A., and Toivanen, P. (2002).
Lossless hyperspectral image compression via linear
prediction. Proceedings of SPIE, 4725(8):600–608.
Mielikäinen, J. and Toivanen, P. (2002). Improved vector
quantization for lossless compression of AVIRIS
images. In Proceedings of the XI European Signal
Processing Conference, EUSIPCO-2002, Toulouse,
France. EURASIP.
Motta, G., Rizzo, F., and Storer, J. A. (2003). On the
compression of hyperspectral imagery. In Storer, J. A.
and Cohn, M., editors, Proceedings of the Data
Compression Conference, Snowbird, Utha. IEEE
Computer Society Press.
Motta, G. and Weinberger, M. J. (2001). Compression of
polynomial texture maps. Technical Report 143 (R.2),
HP Laboratories Palo Alto.
NASA (2003). AVIRIS home page.
http://popo.jpl.nasa.gov.
COMPRESSION OF HYPERSPECTRAL IMAGERY
323