ARTIFICIAL INTELLIGENCE REPRESENTATIONS OF MULTI-MODEL BASED CONTROLLERS

Asier Ibeas, Manuel de la Sen

2004

Abstract

This paper develops a representation of multi-model based controllers by using artificial intelligence typical structures. These structures will be neural networks, genetic algorithms and fuzzy logic. The interpretation of multimodel controllers in an artificial intelligence frame will allow the application of each specific technique to the design of multimodel based controllers. A method for synthesizing multimodel based neural network controllers from already designed single model based ones is presented. Some applications of the genetic algorithms and fuzzy logic to multimodel controller design are also proposed.

References

  1. Beyers H.G. The Theory of Evolution Strategies. Springer, 1998.
  2. Da Ruan (Ed.) Intelligent Hybrid Systems, Fuzzy Logic, Neural Networks and Genetic Algorithms. Kluwer, 1997.
  3. De la Sen M., Miñambres J.J., Garrido A.J., Almansa A. and Soto J.C. Basic Theoretical Results for Describing Expert Systems. Application to the Supervision of Adaptation Transients in a Planar Robots. J. of Int. and Rob. Res. Vol. 35,nº1, pp. 83- 109, 2002.
  4. Etxebarria V.. Adaptive Control of Discrete Systems Using Neural Networks. IEE Proc. Contr. Theory and Appl. Part D. Vol. 141, nº 4, pp. 209-215, 1994.
  5. Fausett, L.V. Fundamentals of Neural Networks. Prentice, 1998.
  6. Gregorcic G., Mullane A. and Lightbody G., Simulink Implementation of Adaptive Control and Multiple Model Network Control. Proc. Of the Nordic Matlab Conf. Pp. 167-173, Oct. 2001.
  7. Ibeas A., de la Sen M. and Alonso-Quesada, S., Adaptive Stabilization of discrete linear systems via a multiestimation scheme. Inter. Math. J. Vol. 3,nº, 4, pp. 381-408, 2003.
  8. Narendra, K.S. and Balakrishnan J., Improving transient response of adaptive control systems using multiple models and switching. IEEE Transactions on Automatic Control, 39 no. 9, pp. 1861-1866, 1994.
  9. Narendra K. S. and Balakrishnan J., Adaptive control using multiple models, IEEE Transactions on Automatic Control, 42 no. 2, pp. 171-187, 1997.
  10. Tilli, T.. Fuzzy Logic, Franzis-Verlag, 1992.
Download


Paper Citation


in Harvard Style

Ibeas A. and de la Sen M. (2004). ARTIFICIAL INTELLIGENCE REPRESENTATIONS OF MULTI-MODEL BASED CONTROLLERS . In Proceedings of the Sixth International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 972-8865-00-7, pages 165-171. DOI: 10.5220/0002597801650171


in Bibtex Style

@conference{iceis04,
author={Asier Ibeas and Manuel de la Sen},
title={ARTIFICIAL INTELLIGENCE REPRESENTATIONS OF MULTI-MODEL BASED CONTROLLERS},
booktitle={Proceedings of the Sixth International Conference on Enterprise Information Systems - Volume 2: ICEIS,},
year={2004},
pages={165-171},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002597801650171},
isbn={972-8865-00-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Sixth International Conference on Enterprise Information Systems - Volume 2: ICEIS,
TI - ARTIFICIAL INTELLIGENCE REPRESENTATIONS OF MULTI-MODEL BASED CONTROLLERS
SN - 972-8865-00-7
AU - Ibeas A.
AU - de la Sen M.
PY - 2004
SP - 165
EP - 171
DO - 10.5220/0002597801650171