DATA MINING: PATTERN MINING AS A CLIQUE EXTRACTING TASK
Rein Kuusik, Grete Lind, Leo Võhandu
2004
Abstract
One of the important tasks in solving data mining problems is finding frequent patterns in a given dataset. It allows to handle several tasks such as pattern mining, discovering association rules, clustering etc. There are several algorithms to solve this problem. In this paper we describe our task and results: a method for reordering a data matrix to give it a more informative form, problems of large datasets, (frequent) pattern finding task. Finally we show how to treat a data matrix as a graph, a pattern as a clique and pattern mining process as a clique extracting task. We present also a fast diclique extracting algorithm for pattern mining.
References
- Agrawal, R., Srikant, R., 1994. Fast algorithms for mining association rules. In VLDB'94, pp. 487-499
- Bertin, J., 1981. Graphics and Graphic InformationProcessing. Walter de Gruyter, Berlin New York
- Dunham, M. H., 2002. Data Mining: Introductory and Advanced Topics. Prentice Hall
- Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., 1996. From Data Mining to Knowledge Discovery: An Overview. In Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R.; Advances in Knowledge Discovery and Data Mining. AAAI Press/ The MIT Press, pp.1-36
- Hand, D., Mannila, H., Smyth, P., 2001. Principles of Data Mining. MIT Press
- Haralick, R.M., 1974. The Diclique Representation and Decomposition of Binary Relations. In JACM, 21,3, pp. 356-366
- Hastie, T., Tibshirani, R., Friedman, J. H., 2001. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer Series in Statistics), Springer Verlag
- Kuusik, R., 1993. The Super-Fast Algorithm of Hierarchical Clustering and the Theory of Monotone Systems. In Transactions of Tallinn Technical University, No 734, pp. 37-62
- Kuusik, R., 1995. Extracting of all maximal cliques: monotonic system approach. In Proc. of the Estonian Academy of Sciences. Engineering, N 1, lk. 113-138
- Kuusik, R., Lind, G., 2003. An Approach of Data Mining Using Monotone Systems. In Proceedings of the Fifth ICEIS. Vol. 2, pp. 482-485
- Lin, D.-I., Kedem, Z. M., 1998. Pincer-Search: A New Algorithm for Discovering the Maximum Frequent Set. In Proc. of the Sixth European Conf. on Extending Database Technology
- Mullat, I., 1976. Extremal monotone systems. In Automation and Remote Control, 5, pp. 130-139; 8, pp. 169-178 (in Russian)
- Park, J. S., Chen, M.-S., Yu, P. S., 1996. An Effective Hash Based Algorithm for Mining Association Rules. In Proc. of the 1995 ACM-SIGMOD Conf. on Management of Data, pp. 175-186
- Võhandu, L., 1981. Monotone Systems of Data Analysis. In Transactions of TTU, No 511, pp. 91-100 (in Russian)
- Võhandu, L., 1989a. Fast Methods in Exploratory Data Analysis. In Transactions of TTU, No 705, pp. 3-13
- Võhandu, L., 1989b. A Method for Automatic Generation of Statements from Examples. In Proceedings of the Second Scaninavian Conference on Artificial Intelligence (SCAI 7889), ed. H. Jaakkola, Tampere, Finland, pp. 185-191.
Paper Citation
in Harvard Style
Kuusik R., Lind G. and Võhandu L. (2004). DATA MINING: PATTERN MINING AS A CLIQUE EXTRACTING TASK . In Proceedings of the Sixth International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 972-8865-00-7, pages 519-522. DOI: 10.5220/0002622905190522
in Bibtex Style
@conference{iceis04,
author={Rein Kuusik and Grete Lind and Leo Võhandu},
title={DATA MINING: PATTERN MINING AS A CLIQUE EXTRACTING TASK},
booktitle={Proceedings of the Sixth International Conference on Enterprise Information Systems - Volume 2: ICEIS,},
year={2004},
pages={519-522},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002622905190522},
isbn={972-8865-00-7},
}
in EndNote Style
TY - CONF
JO - Proceedings of the Sixth International Conference on Enterprise Information Systems - Volume 2: ICEIS,
TI - DATA MINING: PATTERN MINING AS A CLIQUE EXTRACTING TASK
SN - 972-8865-00-7
AU - Kuusik R.
AU - Lind G.
AU - Võhandu L.
PY - 2004
SP - 519
EP - 522
DO - 10.5220/0002622905190522