
REFERENCES
Aggarwal, C. C. and Yu, P. S. (2001). Outlier detection for
high dimensional data. In Proceedings of the 2001
ACM SIGMOD international conference on Manage-
ment of data, pages 37–46. ACM Press.
Anderson, D., Lunt, T., Javitz, H., Tamaru, A., and Valdes,
A. (1995). Detecting unusual program behavior us-
ing the statistical components of NIDES. SRI Techin-
cal Report SRI-CRL-95-06, Computer Science Labo-
ratory, SRI International.
Bishop, C. M. (1995). Neural Networks for Pattern Recog-
nition. Oxford University Press, Oxford.
Burge, P. and Shawe-Taylor, J. (1997). Detecting cellular
fraud using adaptive prototypes. In AAAI-97 Work-
shop on AI Approaches to Fraud Detection and Risk
Management, pages 1–8. AAAI Press.
Cahill, M., Lambert, D., Pinheiro, J., and Sun, D. (2000).
Detecting fraud in the real world. Technical report,
Bell Labs, Lucent Technologies.
Clarke, N. L., Furnell, S. M., Rodwell, P. M., and Reynolds,
P. L. (2002). Acceptance of subscriber authentication
methods for mobile telephony devices. Computers &
Security, 21(3):220–228.
Dasarathy, B. V. (1994). Decision Fusion. IEEE Computer
Society Press.
Eskin, E., Arnold, A., Prerau, M., Portnoy, L., and Stolfo,
S. (2002). Data Mining for Security Applications,
chapter A Geometric Framework for Unsupervised
Anomaly Detection: Detecting Intrusions in Unla-
beled Data. Kluwer.
Kittler, J. and Alkoot, F. (2000). Multiple expert system
design by combined feature selection and probability
level fusion. In Proceedings of the Fusion’2000, Third
International Conference on Information Fusion, vol-
ume 2, pages 9–16.
Kittler, J., Hatef, M., Duin, R. P., and Matas, J. (1998). On
combining classifiers. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(3):226–239.
Kumar, S. (1995). Classification and Detection of Com-
puter Intrusions. Ph.D. thesis, Purdue University.
Kuncheva, L. (2002). A theoretical study on six classifier
fusion strategies. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 24(2):281–286.
Manganaris, S., Christensen, M., Zerkle, D., and Hermiz,
K. (2000). A data mining analysis of RTID alarms.
Computer Networks, 34(4):571–577.
Monrose, F. and Rubin, A. D. (2000). Keystroke dynamics
as a biometric for authentication. Future Generation
Computing Systems (FGCS) Journal: Security on the
Web (special issue).
Samfat, D. and Molva, R. (1997). IDAMN: An in-
trusion detection architecture for mobile networks.
IEEE Journal on Selected Areas in Communications,
7(15):1373–1380.
Schonlau, M., DuMouchel, W., Ju, W., Karr, A., Theus, M.,
and Vardi, Y. (2001). Computer intrusion: Detecting
masquerades. Statistical Science, 16(1):58–74.
Seleznyov, A. (2002). An Anomaly Intrusion Detection Sys-
tem Based on Intelligent User Recognition. Ph.D. the-
sis, Department of computer Science and Information
Systems, University of Jyvskyl
¨
a, Finland.
Sequeira, K. and Zaki, M. (2002). ADMIT: anomaly-
based data mining for intrusions. In Proceedings of
the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 386–
395, Edmonton, Alberta, Canada. ACM Press.
Swets, J. A. (1988). Measuring the accuracy of diagnostic
systems. Science, 240(4857):1285–1289.
Tax, D. (2001). One-class classification. Ph.D. thesis, Delft
University of Technology.
Tax, D. and Duin, R. (2000). Experiments with classifier
combining rules. In MCS 2000, volume 2 of Lecture
Notes in Computer Science, pages 16–29. Springer-
Verlag.
Tax, D., van Breukelen, M., Duin, R., and Kittler, J. (2000).
Combining multiple classifiers by averaging or by
multiplying? Pattern Recognition, 33(9):1475–1485.
Valdes, A. and Skinner, K. (2000). Adaptive, model-based
monitoring for cyber attack detection. In Debar, H.,
Me, L., and Wu, F., editors, Recent Advances in Intru-
sion Detection (RAID 2000), number 1907 in Lecture
Notes in Computer Science, pages 80–92, Toulouse,
France. Springer-Verlag.
Verlinde, P., Chollet, G., and Acheroy, M. (2000). Multi-
modal identity verification using expert fusion. Infor-
mation Fusion, 1(1):17–33.
Wolpert, D. H. (1992). Stacked generalization. Neural Net-
works, 5(2):241–259.
Xu, L., Krzyzak, A., and Suen, C. Y. (1992). Methods
for combining multiple classifiers and their applica-
tions to handwriting recognition. IEEE Transactions
on Systems, Man, and Cybernetics, 22(3):418–435.
Yamanishi, K., Takeuchi, J.-I., Williams, G., and Milne, P.
(2000). On-line unsupervised outlier detection using
finite mixtures with discounting learning algorithms.
In Proceedings of the sixth ACM SIGKDD interna-
tional conference on Knowledge discovery and data
mining, pages 320–324. ACM Press.
Ye, N. and Chen, Q. (2001). An anomaly detection tech-
nique based on a chi-square statistic for detecting in-
trusions into information systems. Quality and Relia-
bility Engineering International, 17(2):105–112.
COMBINING ONE-CLASS CLASSIFIERS FOR MOBILE-USER SUBSTITUTION DETECTION
137