References
[1] I. Guyon and A. Elisseeff. An introduction to variable and feature selection.
J. Mach. Learn. Res., 3:1157–1182, 2003.
[2] M. Kudo and J. Sklansky. Comparison of algorithms that select features
for pattern classifiers. Pattern Recognition, 33(1):25–41, 2000.
[3] M. Egmont-Petersen, W.R.M. Dassen, and J.H.C. Reiber. Sequential se-
lection of discrete features for neural networks — a Bayesian approach to
building a cascade. Patt. Recog. Lett., 20(11–13):1439–1448, 1999.
[4] P. Pudil, J. Novoviˇcov´a, and J. Kittler. Floating search methods in feature
selection. Patt. Recog. Lett., 15(11):1119–1125, 1994.
[5] R. Kohavi and G. John. Wrappers for feature subset selection. Artificial
Intelligence, 97(1–2):273–324, 1997.
[6] D. Charlet and D. Jouvet. Optimizing feature set for speaker verification.
Patt. Recog. Lett., 18(9):873–879, 1997.
[7] P. Somol and P. Pudil. Oscillating search algorithms for feature selection.
In Proc. ICPR’2000, pages 406–409, Barcelona, Spain, 2000.
[8] R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton Uni-
versity Press, 1961.
[9] P.A. Devijver and J. Kittler. Pattern Recognition: A Statistical Approach.
Prentice–Hall International, 1982.
[10] G.V. Trunk. A problem of dimensionality: A simple example. IEEE Trans.
Pattern Anal. Mach. Intell., 1(3):306–307, 1979.
[11] A.W. Whitney. A direct method of nonparametric measurement selection.
IEEE Trans. Computers, 20(9):1100–1103, 1971.
[12] P. Somol, P. Pudil, J. Novoviˇcov´a, and P. Pacl´ık. Adaptive floating search
methods in feature selection. Patt. Recog. Lett., 20(11–13):1157–1163, 1999.
[13] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993.
[14] C.M. Bishop. Neural Networks for Pattern Recognition. Oxford University
Press, 1995.
[15] M. Riedmiller and H. Braun. A direct adaptive method for faster backprop-
agation learning: The RPROP algorithm. In Proc. ICNN93, pages 586–591,
San Francisco, CA, USA, 1993.
[16] G.H. John, R. Kohavi, and K. Pfleger. Irrelevant features and the subset
selection problem. In Proc. ICML-94, pages 121–129, New Brunswick, NJ,
USA, 1994.
[17] P. Perner and C. Apt´e. Empirical evaluation of feature subset selection
based on a real world data set. In Proc. PKDD-2000 (LNAI 1910), pages
575–580, Lyon, France, 2000.
[18] A.F. Frangi, M. Egmont-Petersen, W.J. Niessen, J.H.C. Reiber, and M.A.
Viergever. Bone tumor segmentation from MR perfusion images with neural
networks using multi-scale pharmacokinetic features. Image and Vision
Computing, 19(9–10):679–690, 2001.
185