
9
References
1. I. Anshel, M. Anshel, D. Goldfeld, ”An Algebraic Method for Public-Key Cryp-
tography”, Mathematical Research Letters, 6 (1999), pp. 287-291
2. S. Blackburn, S. Galbraith, ”Cryptanalysis of two cryptosystems based on group
action”, Advances in Cryptology - Asiacrypt 1999, LNCS 1716, pp. 52-61
3. P. Dehornoy, ”Braid-based cryptography”, Preprint, University of Caen, 2003,
http://matin.math.unicaen.fr/∼dehornoy/papers.html
4. T. ElGamal, ”A public key cryptosystem and a signature scheme based on discrete
logarithms”, IEEE Transactions on Information Theory, Volume 31, 1985, pp.
469-472
5. K. H. Koo, S. J. Lee, J. H. Cheon, J. W. Han, J. Kang, C. Park, ”New Public-
Key Cryptosystem Using Braid Groups”, Advances in Cryptology - Crypto 2000,
LNCS 1880, pp. 166-183
6. S.-H. Paeng, K.-C. Ha, J. H. Kim, S. Chee, C. Park, ”New Public Key Cryptosys-
tem Using Finite Non Abelian Groups”, Advances in Cryptology - Crypto 2001,
LNCS 2139, pp. 470-485
7. S.-H. Paeng, D. Kwon, K.-C. Ha, J. H. Kim, ”Improved public key cryptosys-
tem using finite non abelian groups”, IACR EPrint-Server, Report 2001/066,
http://eprint.iacr.org/2001/066
8. C. Tobias, ”Security Analysis of the MOR Cryptosystem”, 6th International
Workshop on Practice and Theory in Public Key Cryptography, PKC 2003, LNCS
2567, pp. 175-186
9. A. Yamamura, ”Public key cryptosystems using the modular group”, 1st Interna-
tional Public Key Cryptography Conference PKC 1998, LNCS 1431, pp. 203-216
10. A. Yamamura, ”A functional cryptosystem using a group action”, 4th Australian
Information Security and Privacy Conference, ACISP 1999, LNCS 1587, pp. 314-
325
A The Special Conjugacy Problem in GL(2,R)
Let Inn(g):GL(2,R) → GL(2,R) be a public inner automorphism. We assume
that Inn(g) is given as a black box, i.e. an attacker is able to calculate images
under Inn(g) but does not know the used g ∈ GL(2,R). This approach assures
that our calculations are independent of the presentation of Inn(g). We now
show that the special conjugacy problem is efficiently solvable in GL(2,R).
Let B, C,X ∈ GL(2,R)andB,XBX
−1
=
ˆ
B =
ˆ
b
1
ˆ
b
2
ˆ
b
3
ˆ
b
4
and C, XCX
−1
=
ˆ
C =
ˆc
1
ˆc
2
ˆc
3
ˆc
4
be two simultaneous instances of the conjugacy problem in GL(2,R).
Let
ˆ
X ∈ GL(2,R) be a solution of these two instances. Then
ˆ
X = Z · X with
z
1
z
2
z
3
z
4
= Z ∈ Z(
ˆ
B) ∩ Z(
ˆ
C). By comparing the components of Z ·
ˆ
B,
ˆ
B · Z and
Z ·
ˆ
C,
ˆ
C · Z we get:
1
1
Since
ˆ
X could also be expressed as
ˆ
X = X ·
ˆ
Z for a
ˆ
Z ∈ Z(B) ∩ Z(C), the following
paragraph is also true if
ˆ
b
i
and ˆc
i
are replaced by b
i
and c
i
. In particular B ∈
Z(C) ⇔
ˆ
B ∈ Z(
ˆ
C).
178