8. Joachims, T. (2000) Estimating the generalization performance of a SVM efficiently. Pro-
ceedings of the Seventeenth International Conference on Machine Learning. 2000. San
Francisco: Morgan Kaufman
9. Klinkenberg, R. and Joachims, T. (2000) Detecting concept drift with support vector ma-
chines. In Proceedings of the Seventeenth International Conference on Machine Learning.
2000. San Francisco. Morgan Kaufmann
10. Manjunath, B.S., and Ma, W.Y., Texture features for browsing and retrieval of
large image data, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 18, 837-842, 1996
11. Qian, F., Li, M., Ma, W., Lin, F. and Zhang, B. (2001) Alternating feature spaces in rele-
vance feedback, 3
rd
International Workshop on Multimedia Information Retrieval, October
5, 2001, Ottawa, Canada
12. Rui Y. and Huang T. S. (2000) Optimizing learning in image retrieval. Proc. of IEEE Int.
Conf. on Computer Vision and Pattern Recognition (CVPR), Hilton Head, SC
13. Rui, Y., Huang, T. S., Ortega, M. and Mehrotra, S. (1998) Relevance feedback: A power
tool in interactive content-based image retrieval, IEEE Transaction on Circuits and Systems
for Video Technology, Special Issue on Segmentation, Description, and Retrieval of Video
Content, 8(5): 644-655
14. Stricker M. and Orengo, M., Similarity of color images. in Proc. SPIE Storage
and Retrieval for Image and Video Databases. 1995
15. Su, Z., Zhang, H. J. and Ma, S. (2001) Relevant feedback using a Bayesian classifier in
content-based image retrieval, SPIE Electronic Imaging 2001, San Jose, CA
16. Tieu, K. and Viola, P. (2000) Boosting image retrieval, Proc. IEEE Conf. Computer Vision
and Pattern Recognition, Hilto Head Island, SC
17. Tong, S. and Chang, E. (2001) Support vector machine active learning for image retrieval,
in Proc. ACM Multimedia 2001, Ottawa, Canada
18. Vapnik, V. (1995) The nature of statistical learning theory. Springer-Verlag, New York
19. Vapnik, V. (1998) Statistical learning theory. Chichester, GB: Wiley
20. Vapnik, V. and Chapelle, O. (2000) Bounds on error expectation for support vector ma-
chines. Neural Computation
21. Vasconcelos, N. and Lippman, A. (1999) Learning from user feedback in image retrieval
systems, NIPS’99, Denver, Colorado
22. Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T. and Vapnik, V. (2001)
Feature selection for SVMs. In Sara A Solla, Todd K Leen, and Klaus-Robert Muller, edi-
tors, Advances in Neural Information Processing Systems 13. MIT Press
23. Wu, Y., Tian, Q. and Huang, T. S. (2000) Discriminant-EM algorithm with application to
image retrieval, in Proc. IEEE Conf. Computer Vision and Pattern Recognition, South Caro-
lina
24. Zhang, L., Lin, F. and Zhang, B. (1999) A CBIR method based on color-spatial feature.
IEEE Region 10 Annual International Conference 1999 (TENCON'99), Cheju, Korea.
1999:166-169
25. Zhang, L., Lin, F. and Zhang, B. (2001a) Support vector learning for image retrieval, IEEE
International Conference on Image Processing (ICIP 2001). pp721-724. Thessaloniki,
Greece
26. Zhang, L., Lin, F. and Zhang, B. (2001b) A neural network based self-learning algorithm of
image retrieval, Chinese Journal of Software, 12(10): 1479-1485
195