
of the Association for Computing Machinery Sixth International Conference on
Knowledge Discovery and Data Mining, pages 71--80, (2000).
12. V. Ganti, Johannes Gehrke, Raghu Ramakrishnan: Mining Data Streams under
Block Evolution. SIGKDD Explorations 3(2): 1-10 (2002).
13. C. Giannella, J. Han, J. Pei, X. Yan, and P.S. Yu, "Mining Frequent Patterns in
Data Streams at Multiple Time Granularities", in H. Kargupta, A. Joshi, K.
Siva
kumar, and Y. Yesha (eds.), Next Generation Data Mining, AAAI/MIT,
(2003).
14. Gaber, M, M., Krishnaswamy, S., and Zaslavsky, A., Adaptive Mining Tech-
niques for Data Streams Using Algorithm Output Granularity, Proc. of The
Aus-
tralasian Data Mining Workshop (AusDM 2003), Held in conjunction with the
2003 Congress on Evolutionary Computation (CEC 2003), December, Canberra,
Australia, Springer Verlag, Lecture Notes in Computer Science (LNCS). (2003)
15. Gaber, M.M., Krishnaswamy, S. and Zaslavsky, A. (2004). Cost-Efficient Min-
ing Techniques for Data Streams. In Proc. Australasian Workshop on Data
Min-
ing and Web Intelligence (DMWI2004), Dunedin, New Zealand. CRPIT, 32.
Purvis, M., Ed. ACS. (2004)
16. S. Guha, N. Mishra, R. Motwani, and L. O'Callaghan. Clustering data streams.
In Proceedings of the Annual Symposium on Foundations of Computer Sci
ence. IEEE, November (2000).
17. L. Golab and M. Tamer Ozsu. Issues in Data Stream Management. In
SIGMOD Record, Volume 32, Number 2, June 2003, pp. 5--14.
18. M. Henzinger, P. Raghavan and S. Rajagopalan, Computing on data streams,
Technical Note 1998-011, Digital Systems Research Center, Palo Alto, CA,
May (1998).
19. G. Hulten, L. Spencer, and P. Domingos. Mining Time-Changing Data
Streams.
ACM SIGKDD (2001).
20. H. Kargupta. CAREER: Ubiquitous Distributed Knowledge Discovery from
Heterogeneous Data. NSF Information and Data Management (IDM) Work-
shop (2001).
21. H. Kargupta, R. Bhargava, K. Liu, M. Powers, P. Blair, M. Klein, K. Sarkar
and D. Handy: Vehicle Data Stream Mining (VEDAS): An Experimental Sys
tem for Mobile and Distributed Data Stream Mining. Information Mining for
Automotive and Transportation Domain workshop. Madrid, Spain (2003).
22. E. Keogh, J. Lin, and W. Truppel. Clustering of Time Series Subsequences is
Meaningless: Implications for Past and Future Research. In proceedings of the
3rd IEEE International Conference on Data Mining. Melbourne, FL. (2003).
23. Kargupta, H., Park, B., Pittie, S., Liu, L., Kushraj, D. and Sarkar, K.
MobiMine: Monitoring the Stock Market from a PDA. ACM SIGKDD
Explorations. January (2002). Volume 3, Issue 2. Pages 37--46. ACM Press.
24. G. S. Manku and R. Motwani. Approximate frequency counts over data
streams. In Proceedings of the 28th International Conference on Very Large
data Bases, Hong Kong, China, August (2002).
159