
Development Life Cycle of Web Service-based Business
Processes. Enabling Dynamic Invocation of Web Services

at Run Time

Dimka Karastoyanova1 and Alejandro Buchmann2

Technische Universität Darmstadt,
Department of Computer Science

Wilhelminenstrasse 7,
64283 Darmstadt, Germany

Abstract. Web service technology aims at application integration by providing
stable service interfaces and standardized communication protocol. However,
this is not yet a mature technology; it lacks certain features, among which
ability to compose services in the most flexible way. We begin with a
comparison of traditional workflow and the existing Web Services-based
process technologies; the advantages of the emerging technologies and how
they meet the new requirements imposed by both the business and Web services
worlds are pointed out. We revise the process life cycle by including additional
phases to the traditional division in only build time and run time. This fosters
standardization, and allows for modeling adaptable business processes. We
concentrate on the dynamic invocation of WSs from within a process instance
and present a new way of finding, binding to and invoking WSs during process
runtime. For this we introduce an additional run time sub-phase to
accommodate the so-called “find and bind” mechanism, which involves policy-
based selection of services and binding to them at run time. The implications of
the “find and bind” mechanism on the process model and the implementation of
the execution environment are also discussed.

1 Introduction

Web services are the newest technology for application integration. This
technology’s main advantage is facilitating the application integration across
organizational boundaries and using the Web – a cheap, simple and ubiquitous
communication medium. Service interface description and communication protocol
specifications for Web services (WSs) already exist (WSDL [25], SOAP [23]), as
well as a specification for Web services registry (UDDI [4]). The technology is
however still immature. It exhibits characteristics of conventional middleware but
there are still some missing or not completely specified or implemented features [1],
[18] such as reliable messaging, caching, conversational support, coordination and
transactional support, compositions made up of Web services, and others, which

Karastoyanova D. and Buchmann A. (2004).
Development Life Cycle of Web Service-based Business Processes. Enabling Dynamic Invocation of Web Services at Run Time.
In Proceedings of the 2nd International Workshop on Web Services: Modeling, Architecture and Infrastructure, pages 9-22
DOI: 10.5220/0002678200090022
Copyright c© SciTePress

would make Web services as important and reliable as the existing middleware
services.

In this paper we focus on compositions of WSs, also known as Web Service Flows
(WS-flows) [17]. There are quite successful attempts to define Web service
compositions and some corresponding implementations. Even though we find certain
similarity between the available WS composition specifications and the traditional
workflow technology, the WS compositions do not yet support all needed features.
The existing WS composition languages do not yet define distributed business
processes [9], and do not provide dynamic invocation of WSs during runtime.
Moreover, the existing specifications provide insufficient support for flexibility and
adaptability of processes to the continuously changing business environment. To
provide this support a strictly specified methodology for development and execution
of WS-flows is necessary, in addition to a common process meta-model for WS-
flows.

In section 2 we provide a brief comparison of traditional workflow technologies
and the features of the emerging business process technologies for WSs. Based on this
comparison we comment on the additional requirement imposed on the design of the
WS-based processes determined by the characteristics of highly distributed
environments.

The definition of a business process development life cycle and its distinct phases
is not fully explored in the fields of traditional workflow and WS-based processes.
We refine the process life cycle known from conventional workflow and so adapt it to
processes involving WSs (section 3). Each of the phases accommodates particular
approaches addressing different aspects of creating flexible WSs-based business
processes. It is meaningful to present such a revised formulation of a process life
cycle, for it provides useful directions for modeling and developing flexible WS-
flows, and facilitates reusability of process definitions. The life cycle definition
provides also clear guidance and framework for defining a methodology for creation
and execution of WS-flows and motivates the creation of a common process model.

In section 4 we pay special attention to the additional “find and bind” run-time
sub-phase that helps solving some problems of the existing systems, rooted in their
lack of dynamic features during process execution. We conclude with a simple
example of how the “find and bind” mechanism functions in practice in the context of
a BPEL process.

2. Web services and traditional workflow

Web services are currently used to perform only very simple computations. For
mission critical applications it is required to combine today’s simple WSs into
complex ones and enable complex coordinated interactions among them; such
complex WSs would be more suitable for achieving complicated business goals.
Therefore a common business process model and corresponding definition language
specification are necessary. For the purposes of our further discussion in this respect,
this section gives a brief overview of the existing WS-based composition technologies
while comparing them to the traditional workflow approaches.

10

Usually, when composition of tasks is discussed one thinks of the existing
workflow technologies. Workflow technology has matured in the last decade. It has
been the subject of extensive standardization and is broadly accepted. The most
prominent workflow standardization community is represented by the Workflow
Management Coalition (WfMC). The WfMC has provided a reference model for
Workflow Management Systems (WfMS) that allows for the interoperability between
WfMSs developed by different vendors. Interoperability is assured by implementing
standardized APIs exposed by the WfMSs and all auxiliary tools supporting the
development and execution of workflows [14]. There is no standardized model for the
process definition itself, and therefore all vendors are free to develop their own
workflow models. However, the WfMC specifies the XML Process Definition
Language (XPDL) that is used for exchange of process definitions across different
WfMC-compliant workflow engine implementations [15], [23]. Apart from the
WfMC’s there are other models and approaches for defining workflows [12], [16].

In the field of WSs there are two competing industry-driven specifications for
service compositions. These are the Business Process Execution Language for WSs
(BPEL4WS, shortly BPEL) [9] and the Business Process Modeling Language
(BPML) [3]. They specify languages for defining business processes that use WSs for
performing certain tasks on behalf of the process, i.e. WS-flows [17]. Either of the
two specifications has the potential of becoming a de facto standard.

When comparing the traditional workflow technology with the newly developed
technologies involving the use of WSs, considerable similarities are recognized.
Basically, the WS-flows technologies are following the traditional workflow
technology terminology and general principles. For example, a business process
defined by BPEL or BPML is described in terms of the same general aspects a
traditional workflow description exhibits. Even though there is no terminologically
established explicit distinction of the perspectives of a process definition, both
BPEL4WS and BPML define control and data flows [20] (corresponding to
behavioural and information perspectives), distinguish between simple and complex
activities (reflecting super- and sub-workflows, i.e. functional aspect), and specify the
WSs that are going to perform on behalf of a particular process activity (operational
perspective [16]). There are however differences, which can be ascribed to the basic
principles of the WSs paradigm; WS-flows do not describe a process in terms of its
relationship to some organizational structure – WSs are meant to provide an
organization-neutral, transparent access to services over the Web.

To the differences counts the fact that the existing WS-flow languages are block-
structured [22], whereas the traditional workflow languages (XPDL, MOBILE [16])
are based on a directed-graph model. These are two groups of languages, based on
different process calculi [10] and therefore they have distinct operational semantics.
The differences in the semantics have important implications. Block-structured
languages are more suitable for expressing much more complex control flows.
Moreover, they are able to provide support for distributed business processes in which
exception handling can be interleaved with the business logic [13]. It is very
important to realize that block-structured process definition languages are more
suitable for enabling transactional support for long-running business interactions. In
the case of long-running transactions compensating activities have to take a
meaningful corrective action that allows the process execution to continue, rather than

11

simply reversing the effect of completed activities and terminating the whole process.
Even better, in this respect, is the approach BPEL4WS provides, which is a hybrid-
solution combining language elements corresponding to both block-structured and
graph-based models [10]. There are two other specifications closely related to
BPEL4WS that add features to the capabilities the applied process calculus provides.
These are WS-Coordination [6] and WS-Transaction [7]. They provide a coordination
framework and pluggable transaction protocols, respectively, extending the
capabilities of BPEL4WS represented explicitly by the concept of scopes.

Since WSs is a technology meant to support application integration across
organizational boundaries it is relevant to consider both traditional workflow and WS-
flows according to their suitability for business-to-business (B2B) interactions. In
addition to the potential exception handling and transactional support capabilities
WS-flows meet some additional requirements imposed by the B2B environment [21].
WSs enable inter-enterprise interactions in a standardized way (standardized
communication protocols and formats). On the one hand WS-flows take advantage of
this by involving WSs to perform on behalf of a process, as opposed to conventional
workflow, where WSs are not among the set of applications and resources responsible
for performing tasks. On the other hand, some WS-flow languages carry this further
by exposing the business processes as WSs (e.g. BPEL4WS), thus ensuring the reuse
of functionality among enterprises, via a uniform interface and using a standardized
communication protocol.

Certainly, WS-flows have advantages over conventional workflow processes in a
distributed business environment but there is a lot more to be done for them to qualify
for mission critical applications. There is no specification that states completely how
dynamic invocation of services (from within a business process instance) is to be
performed. Processes are currently modeled as collections of activities bound to
specific WS instance (or at least to their abstract description). This proves restrictive
for providing flexible and adaptable processes based on WSs. Therefore, a meta-
model for defining WS-flows is needed. The existence of such a model would enable
the creation of abstract process definitions that would allow postponing the binding of
the process definition to particular WSs instances to a later phase of the process life
cycle. To relate to the exact point in time in which the process definition is bound to
specific WSs, special attention has to be paid to the life cycle phases of a WS-flow.

In the field of traditional workflow the life cycle is divided into two stages: build
time and run time (Figure 1) [14], [16], [20]. This division is important but it is not
sufficient enough for the purposes of developing flexible WS-flows; a more detailed
specification of a process life cycle is needed. Therefore in the next section we revise
the phases of the process life cycle; it simplifies and clarifies the development of
adaptable processes. It gives also guidance about what kind of process model is
needed and what transformations its computerized representation must undergo before
becoming an executable process definition. Such an explicit definition of distinct
process life cycle phases fosters process definition reusability and allows for clear
separation of concerns of process and system developers.

12

3 Revision of the WS-Flow development life cycle

The WfMC’s standardizing effort is mainly focused on standardization for
interoperability among WfMSs; hence it did not put any restrictions on the process
model the WfMSs vendors use, and did not specify any standard procedure to guide
the development of a process. As a result it specified only the distinction between
build time and runtime (Figure 1).

Process Model
Build Time

Business Process Modeling,
Workflow Definition Tools

Run Time

Workflow Engine

Applications
& IT Tools

Database

Figure 1 Development life cycle of a traditional workflow.

This is quite a general view which should be explored and refined further. The
detailed statement of a process development life cycle is not a new way of
considering application development, as process development certainly is. Typical
phases in the life cycle of an application include production time, compile time, link
time, load time, run time, and post-runtime [11] in a continuum. The application
phases depend on the application programming model used. For instance, the above
mentioned division is not relevant for highly available distributed systems, because
they are almost always at runtime; but for components being replaced in the system,
those life cycle phases are relevant. In the context of typical C++ applications slightly
different life cycle phases are distinguished; these are source time, pre-processing
time, compile time, link time, load time, and run time [8]. Component generation, as
another example, might require two more phases: code generation and code assembly.

3.1 Model considerations

Given our goal is to create adjustable business processes and the corresponding
process management systems to execute those processes, it is necessary to develop a
common process model. Such a model has to define a process without precisely
specifying the WSs to be invoked; in other words, no locations of WSs should be
incorporated into the process definition. For an even more flexible, and of course
more complex solution, the model might also exclude any explicit statement of the
abstract definitions of a WS such as portTypes, operation names etc. In order to get an
executable definition of the WS-flow the abstract process definition based on the
model should undergo different transformations in a predefined order, specified by
the process life cycle. During the various transformations the process definition will

13

be enriched with the necessary data, and in some cases meta-data might be required
depending on the process model used; for instance, the moment a WS-flow is
executed, it might be necessary to supply it with meta-data related to the WSs it
invokes, or meta-data might also be required during transformations in the phases
prior to run-time. It is necessary to relate the model development, as well as the
process definition transformations to a standardized methodology supporting process
development. Such a methodology should be guided by a precisely specified process
life cycle. Such a procedure does not yet exist; moreover process development life
cycle is a topic not fully explored in the context of both traditional workflow and WS-
flows. Therefore in the following section we introduce our view on the development
life cycle for a WS-Flow and its phases.

3.2 WS-flow life cycle

To accommodate the above mentioned considerations we introduce a detailed and
refined WS-flow life cycle (Figure 2).

Figure 2 WS-flow life cycle phases.

It includes the following phases:
• Process template modeling and assembly phase
• Process definition generation
• Compile time
• Pre-processing time
• Deployment
• Execution time
• Post-run time

Depending on the application scenario these phases may be further split into sub-
phases; phases can also be skipped.

The process template modeling and assembly phase is the one in which the process
is modeled and a process definition template is created. The WS-flow template is a
collection of activities, defining the process abstractly. Depending on the process
model, the activities comprising the process template may themselves be templates,
e.g. representing frequently used complex activities, design patterns, decision
activities, algorithms, business rules, place holders, etc. To reflect this fact, this life
cycle phase might be split into two sub-phases, for example: template generation - for
creating templates for design patterns, special business logic activities, and others,
and template assembly – combining those templates into process definitions. The
process definition resulting at the end of this phase should exclude any specification
of the exact WSs instances, as well as any commitment to a process definition

14

language. In other words, the output of the first life cycle phase is a non-executable
abstract process definition. It is created on the basis of a common meta-model and
common model constructs represented by the elements of a corresponding definition
language. In order to obtain an executable computerized representation of the process
additional details have to be inserted. This is done during the next step.

During the process definition generation phase the process definition created in the
previous phase is transformed into an executable process definition. The process
definition might undergo several transformations, and during each transformation it is
enriched with further details and data related to the executable process. Again, this
phase may also be split into several separate sub-phases. Each of these sub-phases
corresponds to a particular transformation imposed on the process definition. Those
sub-phases involve the use of meta-programs performing transformations based on a
meta-model, e.g. code generators, compilers and so on. As a result a much more
detailed process description is obtained. It might also be a description of a WS-flow in
one of the existing languages; this in turn might result in skipping some of the
succeeding phases, due to the characteristics of those existing technologies. This
phase could also be used to translate a process definition written in one language into
another one. Enabling such conversion fosters the reuse of process definitions on
different workflow engines based on the process model, rather than on language
mappings.

Depending on the implementation approach the process definition can be enhanced
by meta-programs during compile time, too; but this is not to be considered an
obligatory step. For instance, if a process definition in BPEL has to be created and
executed, the compile phase would not be relevant to the process definition itself.
However, this step may include compilation of parts of the process definition.

In some application scenarios a pre-processing step could also be required. Pre-
processing involves enriching the process definition with additional data, as well as in
some cases providing interface descriptions of WSs participating in the process.

Usually upon deployment the process definition is enhanced with execution
environment-specific information. In some cases during that phase the system is
provided with auxiliary information related to the application execution; take for
example component models such as the J2EE one. Such a declarative specification of
properties can also be useful for WS-flows development. Depending on the process
model and the implementation approach different data can be appended to the process
definition during the deployment phase. For instance, the BPEL4WS specification
requires that the WSDL documents of all participating WSs are provided, as well as
the WSDL interface of the process itself. Moreover, additional code is generated
within the process interface definition that states the binding information necessary to
access the process as a WS – port locations, access mechanism.

After being deployed a process can be executed. During run time a process
instance is created and runs according to the process schema. In traditional workflow
all applications, resources and human participants are stated prior to the execution, or
as it is the case with some more flexible systems, participants and resources can be
picked up dynamically from a pool of available ones. The existing WS-flows
specifications do not yet provide a fully dynamic invocation of WS for performing a
task; either the exact location of the WS is specified together with all the binding
information (BPEL4WS), or at least the abstract description of WSs is stated. These

15

cases do not provide for fully adaptable and flexible WS-flows. The latter case is
difficult to deal with having in mind the state of the WSs technology. It is not yet
possible to search for WSs according to the functionality they provide, due to the lack
of sufficient semantic description approaches for WSs; therefore it is not yet feasible
to postpone the binding to an abstract WS (i.e. its functionality, portType) up until run
time and that is why it has to be done during some of the stages before the execution.
The former case, in which the binding to a concrete WS location is involved, is more
restrictive with respect to adaptability features but can easier be dealt with. Under
certain assumptions (reflected by the process model as well) it is possible to choose
an instance of a WS that can perform work on behalf of a process activity, based on
its abstract description. In general, to do this a search for WS instance has to be done
before each single invocation of a WS, and when found its binding information (WS
instance location) has to be incorporated into the activity definition, in order to
perform the service invocation itself. This is a recurrent sub-phase that we call “find
and bind” phase. We draw the attention to this particular life cycle phase in the next
section. Note that this phase is a part of the runtime of a WS-flow and in principle it
has to take place immediately before each WS invocation.

As a final phase in the WS-flow life cycle we define the post-runtime phase, which
allows making changes in the process definition, depending on the progress and
results of the execution of a process instance, and on changes in the business
requirements. Such changes are classified as static (process) configuration [11].

Having stated clearly the framework for WS-flow development and execution
allows us to concentrate on the different approaches and tools needed for addressing
each step in the life cycle. In the next section we discuss an approach for enabling
dynamic invocation of WSs during the run time of a business process.

4 Dynamic choice and invocation of a WS. Find and Bind sub-
phase

In this section we consider in more detail the “find and bind” sub-phase of the
process run time phase. We explain how it accommodates and enables dynamic
invocation of WSs by WS-flows, and what the advantages and disadvantages of this
approach are. We comment on the implications of this sub-phase on the process
model and the infrastructure implementation.

We include a “find and bind” sub-phase within process run time to enable dynamic
invocation of WSs. Note that in this paper we refer to dynamic invocation as the
combined action of selecting a particular instance of a WS and subsequently invoking
it during the run time phase of the process life cycle. These are in essence the actions
that have to be performed during each “find and bind” phase before each WS
invocation (see Figure 3). The selection of a WS instance should be based on various
criteria such as: compliance to a WS abstract description (WSDL abstract
description), availability at the moment of process execution, cost, performance and
other quality of service (QoS) characteristics. This approach has several implications
on both the process model and the infrastructure for modeling and execution of the
WS-flows. Moreover it is related to other complex issues such as the ability to

16

describe QoS characteristics of WSs, selection policy description and the respective
description language, and WSs discovery mechanisms.

The modeling implications are in the fact that the process model has to support
generic activities that perform the search and selection of a WS on the one hand, and
on the other invoke a WS (Figure 3).

Figure 3 WS invocation activity extended with a “find and bind” element

Process definitions based on such a model should not include any reference to
concrete WS instances, meaning that the definitions should be describing a WS-flow
only on the basis of abstract information about the participating WSs. The existing
specifications of WS-flow languages (BPEL, BPML) involve WSs invocation from
within a process instance, but they do not enable dynamic invocation in the meaning
of this term we defined above. However, it is possible to extend those specifications
with such activities/constructs that either search for and invoke a WS, or only search
for an appropriate WS and pass the necessary information to the already available
activities that perform service invocation. We provide a simple example of a possible
extension in the context of BPEL in section 4.1.

As regards the implementation characteristics, a suitable mechanism is needed to
perform the look up of Web service instances and selection of a single WS according
to (probably parameterized) criteria specifications, and then bring the information to
the activities invoking the services. Consider that it might be necessary to keep this
mechanism transparent for the users in order to hide the complexity of the whole
approach. The basic idea behind the find and bind approach is similar to the one
implemented by the Web Service Invocation Framework (WSIF). WSIF provides a
mechanism to access WSs based on their abstract description (WSDL portTypes and
operations), i.e. independent of their binding information (access mechanism and
protocol) and port addresses. The goal of this client-side framework is however
different; it aims at providing the WSs clients with the possibility to invoke services
using different invocation mechanisms and communication protocols (SOAP, java
calls etc.) depending on their needs [2]. Following the idea of WSIF to use only the
abstract descriptions of WSs and providing only this description to the process
(without any detail on the concrete WS instances), a mechanism for finding all WSs

17

implementing a given WSDL abstract description in a UDDI registry [4] can be
developed (Figure 3). Having found all these services a single WS instance can be
selected based on the given criteria. Then, after already having parsed the concrete
definition of the selected WS, and having found the port at which it is available, we
can pass this information to the activity dealing with the invocation of this particular
service. In practice this can be done in two ways: the engine implementation could
use variables and store the information there, or process variable can be used instead
for the same purpose.

In the general case the finding and binding must be performed before each process
activity that invokes a WS is started. However this might again have implications on
both the process model and the execution environment (Figure 3). As a simple
example, consider the idea of incorporating such an approach into a BPEL4WS
process. Having in mind the specification, an extension to the language schema is
required to accommodate the look-up for the most appropriate WS and the selection
procedure, either for each WS invocation activity (invoke, reply, receive) or in some
generic way. This influences inevitably the implementation of the process engine as
well.

Introducing this additional repeating sub-stage during the run time phase has the
advantage of allowing the process to select the most appropriate service at run time.
Thus at least the availability of the invoked WS can be ensured, because the service’s
appropriateness depends on various criteria, including its availability. Each time a WS
is not available for some reason, the find and bind approach can ensure that another
WS implementing the same abstract WSDL description is used; compare this to the
case in which the service location (port) is determined upon deployment – no other
service can be used instead, and the process description has to be changed and
redeployed. This provides a WS-based process with additional flexibility and
increases the degree of availability of the process as a whole. A model that ensures
this kind of flexibility at run time can also be considered an adaptable one; even
though it is a quite restricted representation of adaptability, the WS-flow can adjust to
changes in the environment, in this case exhibited by the changing QoS characteristics
of a WS and more importantly its availability. To the flaws of the approach counts
mainly the one additional call to the UDDI registry (SOAP over HTTP) executed
before each WS invocation. This is a disadvantage that results in performance loss of
the overall process. The realization of the approach is complicated by the lack of
specifications related to QoS issues in the WSs world; therefore it is difficult to
provide feasible selection policies today; and even if they existed, it would take
computational time for the evaluation of the WS appropriateness.

Even though in this generic approach it is required to perform the “find and bind”
phase before each WS invocation, in practice a more efficient implementation
solution can be provided. The solution can be optimized with respect to performance
by performing search for and binding to a WS only when it is needed. Usually in a
B2B environment business partners know each other’s processes and services;
therefore they do not need to check the QoS characteristics of a partner’s service each
time it is used. This means that a process should find and bind to services it invokes
ones and perform subsequent search and selection only if a drastic change in the
service’s QoS characteristics happens. The trade-off between dynamic features at run-
time and performance of the process depends on the implementation specifics. The

18

success of the approach depends also on how the system is informed about the
changes in the environment and the way the changes are described.

4.1 Example

To make the approach clearer we show an example. Consider a simple WS-flow
implemented in the BPEL4WS language; the process implements a simple currency
converter, and invokes two WSs with simple functionalities provided by partners – a
service providing cross-currency rate quotes, and a service that does the calculation
[17]. The most important steps in the process control flow are shown in Figure 4. A
client sends a message to the WS-flow that is exposed as a WS; upon receiving the
message the WS-flow invokes a partner WS that generates and returns a cross-
currency rate quote; the WS-flow then sends the received cross-currency rate value to
a simple converter WS (performing a simple multiplication) and gets as a result a
value that it subsequently sends to the customer. The figure represents the WS-flow
with the find and bind functionality already inserted as additional activities.

Figure 4 Currency converter WS-flow – an example

An example of a BPEL activity that invokes a WS can be seen in the next code
listing; the code presents a BPEL process definition (details are omitted due to space
limitations). The search for and binding to a WS is mapped to a language element,
which can be appended to the BPEL4WS schema.

converter
WS

Web Service

rate
generator

WS

client

Process

< invoke>
 rate generator
< / invoke>

< reply>
< /reply >

< invoke>
 converter
< / invoke>

< receive>
< /receive >

find and bind

find and bind

UDDI

...

...

...

19

<process name="MyConvertCurrencyBP">
<!-- additional details -->
…
<!-- find and bind -->
 <find>
 <bpws-uddi:find_businessService()/>
 <bpws-uddi:get_bindingTemplate()/>
 <bpws-uddi apply_policy()/>
 <variable name="instanceURL">
 <wsdl:message name="URL-Return">
 <part name="URL-String" type="xsd:String"/>
 </wsdl:message>
 <variable/>
 </find>
<!-- invoke Converter -->
 <invoke partner="converter"
 portType="nsws:CurrencyConvService"
 operation="usd2eur"
 inputContainer="Currency_and_Rate"
 outputContainer="result"
 name="ConversionRequest"/>
<!-- additional details -->
…
</process>

The functions used to query the UDDI registry (qualified by the bpws-uddi
namespace) can also be defined in an appendix to the BPEL specification. Of course
this is a sample definition of those functions, the syntax can be different; moreover
they can also be provided by the process engine and performed before any service
invocation activity, and therefore the process developer would not need to care about
coding but would lose the flexibility of specifying choice policies. As for the location
of the chosen service, there are some alternatives for passing the information to the
invocation activities. We can declare additional process variables in the BPEL process
to store the WS endpoint address. It is also possible to make the engine care about the
port address. Whatever alternative is chosen for the implementation, it is very
important to allow the WS-flow to choose from a set of services providing the same
functionality at run time.

5 Conclusions

In the developing field of WS-based business processes there is a need for a
precise methodology for their development and execution. Such a methodology is
closely related to and guided by the process life cycle. The development life cycle of
business processes is an issue not completely explored in the field of traditional
workflows. In this paper we refine the traditional view on the division of the life cycle
phases and adapt it to the WS-based processes. The detailed description of the life
cycle phases is meant to guide the creation and execution of WS-flows with desired
features. Among those features are flexibility of the WS-flows and adaptability to
changes in the environment. One way to provide those features is to enable dynamic

20

selection of WS instances and their subsequent invocation during the execution time
of a process. For this, we introduced an additional sub-phase in the run time phase of
the life cycle. It is named the “find and bind” phase, and as the name implies it
accommodates a mechanism for finding the most appropriate WS instance for
performing on behalf of the process and binding to it; the mechanism should be
represented appropriately in the process model and its instances. The “find and bind”
mechanism is related to the concepts of QoS characteristics and selection policies.
This approach aims on the one hand at providing dynamic features to the WS-flows
but on the other hand it requires that a common process meta-model be developed and
extensions to the existing technologies and their implementations be made. The
success of the “find and bind” approach is largely dependent on its influence on the
overall WS-flow - it should be performed only when it is needed. This issue, however,
is related to how the system is informed about changes in the environment and how it
reacts on these changes.

References:

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V., “Web Services. Concepts, Architectures
and Applications”, Springer-Verlag. Berlin Heidelberg New York, 2003.

2. Apache <Web Services/> Project, “WSIF – Introduction”, 2002. http://ws.apache.org/wsif/
3. Arkin, A. et al., “Business Process Modeling Language”, BPMI.org, 2002.
4. Bellwood, T., Clément, L., Ehnebuske, D., Hately, A., Hondo, M., Husband, Y.L.,

Januszewski, K., Lee, S., McKee, B., Munter, J., von Riegen, C., “UDDI Version 3.0”,
IBM, HP, Intel, Microsoft, Oracle, SAP. 2002. http://uddi.org/pubs/uddi_v3.htm

5. Brittenham, P. Cubrera, F., Ehnevuske, D., Graham, S., “Understanding WSDL in a UDDI
registry”, IBM, 2001.

6. Cabrera, F. et al., “Web Services Coordination” (WS-Coordination), 2002.
http://www.ibm.com/developerworks/library/ws-coor/

7. Cabrera, F. et al., “Web Services Transaction” (WS-Transaction), 2002.
http://www.ibm.com/developerworks/library/ws-transpec/

8. Coplien, J. O., 1998. “Multi-Paradigm Design for C++”, Addison-Wesley, Reading, MA,
USA. (as cited in [Czarnecky, 2002])

9. Curbera, F., Goland, Y., Klein, J., Leyman, F., Roller, D., Thatte, S., Weerawarana, S.,
“Business Process Execution Language for Web Services (BPEL4WS) 1.0”, August 2002,
http://www.ibm.com/developerworks/library/ws-bpel

10. Curbera, F., Khalaf, R., Leymann, F., Weerawarana, S., “Exception Handling in the
BPEL4WS Language”, In Proceedings of the BPM2003, 2003.

11. Czarnecki, K., Eisenecker, U., “Generative Programming: methods, tools, and
applications”, Addison-Wesley. 2nd edition, 2002.

12. Dayal, U., Hsu, M., Ladin, M., “Business Process Coordination: State of the art, trends, and
open issues” In Proceedings of VLDB 2001, 2001.

13. ebPML.org, “XPDL”, 2001. http://www.ebpml.org/xpdl.htm
14. Hollingsworth, D., “The Workflow Reference Model”, Document Number TC00-1003. The

Workflow Management Coalition, 1995. www.wfmc.org
15. Hollingsworth, D., “Events”, A White Paper, The Workflow Management Coalition. 1999.

www.wfmc.org

21

16. Jablonski, S., Bussler, C., “Workflow Management. Modelling Concepts, Architecture and
Implementation”, International Thomson Computer Press, London, 1996.

17. Karastoyanova, D., “Creation and Deployment of Web Services and Web Service Flows”,
A Tutorial, In Proceedings of iiWAS2003, Austrian Computer Society, September 2003.

18. Karastoyanova, D., Buchmann, A., “Components, Middleware and Web Services”, In
Proceedings of IADIS International Conference WWW/Internet 2003, Volume II, IADIS
Press, 2003.

19. Leymann, F., Roller, D., “A quick overview of BPEL4WS”, IBM Developer Works, 2002.
http://www-106.ibm.com/developerworks/

20. Leymann, F., Roller, D., “Production Workflow. Concepts and Techniques.”, Prentice Hall
Inc., 2000.

21. Peltz, Ch., “Web Services Orchestration and Choreography”, IEEE Computer, October
2003, Volume 38, Number 10, pp. 46-52.

22. Shapiro, R. “A Comparison of XPDL, BPML, and BPEL4WS”, Cape Vision, May 2002,
http://xml.coverpages.org/Shapiro-XPDL.pdf

23. Workflow Management Coalition, “Workflow Process Definition Interface – XML Process
Definition Language”, Document Number WFMC-TC-1025, Version 0.03, 2001.
www.wfmc.org

24. World Wide Web Consortium (W3C), “SOAP Version 1.2”, W3C Recommendation, 2003.
http://www.w3.org/TR/soap12-part0/

25. W3C, “Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language”,
W3C Working Draft, 2003. http://www.w3.org/TR/wsdl20

22

