[3] Teufel, S., Moens, M.: Summarizing scientific articles: Experiments with relevance
and rhetorical status. Computational Linguistics 28 (2002) 409–446
[4] Teufel, S., Moens, M.: What’s yours and what’s mine: Determining intellectual
attribution in scientific text. In: Proceedings of Joint SIGDAT Conference on
Empirical Methods in NLP and Very Large Corpora. (2000)
[5] Dickman, S.: Tough mining, the challenges of searching the scientific literature.
PLoS Biology 1(2) (2003) 144–147
[6] Tapanainen, P., J¨arvinen, T.: A non-projective dependency parser. In: Proceed-
ings of the 5th Conference on Applied Natural Language Pro cessing. (1997)
[7] Tersmette, K.W.F., Scott, A.F., Moore, G.W., Matheson, N.W., Miller, R.E.:
Barrier word method for detecting molecular biology multiple word terms. In:
Pro ceedings of the 12th Annual Symposium on Computer Applications in Medical
Care. (1988) 207–211
[8] Zipf, G.K.: Human Behavior and The Principle of Least Effort. An Introduction
to Human Ecology. Addison-Wesley Press., Reading, MA (1949)
[9] J¨arvinen, T.: Annotating 200 million words: The bank of english project. In:
Pro ceedings of Coling-94, Vol. I, Kyoto, Japan (1994) 565–568
[10] Charniak, E.: A maximum-entropy-inspired parser. In: Proceedings of NAACL-
2000. (2000)
[11] Marcus, M.P., Santorini, B., Marcinkiewicz, M.A.: Building a large annotated
corpus of english: the penn treebank. Computational Linguistics 19(2) (1994)
313–330
[12] Hulth, A.: Improved automatic keyword extraction given more linguistic knowl-
edge. In: Proceedings of the 2003 Conference on Empirical Methods in Natural
Language Processing. (2003) 216–223
[13] Srinivasan, S., Rindflesch, T.C., Hole, W.T., Aronson, A.R., Mork, J.G.: Finding
umls metathesaurus concepts in medline. In: Proceedings of AMIA Symposium.
(2002) 727–731
[14] Pustejovsky, J., Castafio, J., Zhang, J., Kotecki, M., Cochran, B.: Robust rela-
tional parsing over biomedical literature: Extracting inhibit relations. In: Pro-
ceedings of 2002 the Pacific Symposium on Biocomputing. (2002) 362–373
[15] Hindle, D.: Deterministic parsing of syntactic non-fluencies. In: Proceedings of
the 21st Annual Meeting of the Association for Computational Linguistics. (1983)
123–128
[16] McDonald, D.D.: Robust partial parsing through incremental, multi-algorithm
pro cessing. In Paul, S.J., ed.: Text-Based Intelligent Systems. Lawrence Erlbaum
Asso c (1992) 83–99
[17] Weischedel, R., Meteer, M., Schwartz, R., Ramshaw, L., Palmucci, J.: Coping
with ambiguity and unknown words through probabilistic models. Computational
Linguistics 19(2) (1993) 359–382
[18] Andrade, M.A., Valencia, A.: Automatic annotation for biological sequences by ex-
traction of keywords from medline abstracts. development of a prototype system.
In: Proceedings of International Conference on Intelligent System for Molecular
Biology. (1997) 25–32
[19] Ohta, Y., Yamamoto, Y., Okazaki, T., Uchiyama, I., Takagi, T.: Automatic con-
struction of knowledge base from biological papers. In: Proceedings of Interna-
tional Conference on Intelligent System for Molecular Biology. (1997) 218–225
[20] Fukuda, K., Tsunoda, T., Tamura, A., Takagi, T.: Toward information extraction:
Identifying protein names from biological pap ers. In: Proceedings of 1998 the
Pacific Symposium on Biocomputing. (1998) 707–718
85