References
1. R. Plamondon and S.N. Srihari, On-line and off-line handwriting recognition: a comprehen-
sive survey. IEEE Trans. Pattern Anal. Mac. Intell. 14 1 (2000), pp. 3–19.
2. R. Sabourin, G. Genest and F. Preteux , Offline signature verification by local granulometric
size distributions. IEEE Trans. PAMI
19 8 (1997), pp. 976–988.
3. S. lee, J. C. Pan, Off-line tracing and representation of signatures, IEEE Trans. Systems Man
Cybernetics. SMC-22 (1992) 755-771.
4. Y. Qi, B.R. Hunt, Signature verification using global and grid features, Pattern Recognition,
27(12), 1994, 1621-1629.
5. R. Bajaj, S. Chaudhury, Signature verification using multiple neural classifiers, Pattern
Recognition 30(1) (1997) 1-7.
6. V. E. Ramesh, M.N. Murty, Off-line signature verification using genetically optimized
weighted features, Pattern Recognition, 32 (1999), 217-233.
7. K. Huang, H. Yan, Off-line signature verification using structural feature correspondence,
Pattern Recognition, 35(11), (2002) 2467-2477.
8. H. Kim and P. H. Swain, Evidential reasoning approach to multisource data classification in
remote sensing, IEEE Trans. on Sys., Man and Cybernetics, 25(8): pp. 1257-1265, 1995.
9. L Xu, A Krzyżak, C. Y Suen, Methods of Combining Multiple Classifiers and Their Appli-
cations to Handwriting Recognition, IEEE Transactions on Systems, Man and Cybernetics,
22(3) 1992, 418-435.
10. E. Mandler and J. Schurman, Combining the classification results of independent classifiers
based on Dempster-Shafer theory of evidence, International Journal of Pattern Recognition
and Artificial intelligence, pp. 381-393, 1988.
11. G. Ng and H. Sing, Data Equalization with Evidence Combination for Pattern Recognition.
Pattern Recognition Letters, 19 (1998) 227-235.
12.W. B. Luo and B. Caselton, Using Dempster-Shafer theory to represent climate change,
Journal of Environment Management, 49: 73-93, 1997.
13. I. Bloch, Some Aspects of Demspter-Shafer Evidence Theory for Classification of Multi-
Modality Medical Images Taking Partial Volume Effect into Account, Pattern Recognition
Letters 17, 1996, 905-919.
14. A. Verikas, K. Malmqvist, and M. Bacauskiene, Combining Neural Networks, Fuzzy Sets,
and Evidence Theory Based Approaches for Analyzing Colour Imges, IEEE-INNS-ENNS
International Joint Conference on Neural Networks, Como, Italy, July 2000 pp 297-302.
15. B. Mandelbrot. Fractals: Form, Chance and Dimensions, Freeman, San Francisco, CA,
1977.
16. V. Bouletreau, N. Vincent, R. Sabourin, and H. Emptoz. Synthetic parameters for handwrit-
ing classification, IEEE 1997, 102-106.
17. G. Shafer, A mathematical Theory of Evidence, Princeton Univ. Press, Princeton New
Jersey, 1976.
18. R. R. Yager. On the Dempster-Shafer Framework and New Combination Rules. Info. Sc.,
41, 1987, pp. 93-138.
19. T. Denoeux, A k-Nearest Neighbor Classification Rule Based on Dempster-Shafer Theory,
IEEE Transactions on Systems, Man, and Cybernetics, 25(5), 1995, 804-813.
20. M. Arif, T. Brouard, and N. Vincent, Non parametric fuzy modeling of belief function in
evidence theory, 15
th
Conf of IASTED, MS2004, March 1-3, Marina Del Rey CA, USA
44