4 EXAMPLES
Example 1 In (1) let
⎥
⎦
⎤
⎢
⎣
⎡
=
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎣
⎡
=
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎣
⎡
−
−
−−
=
010
001
,
001
010
101
,
100
03/20
103/1
C
BA
.
The system has no Smith zeros; on the other hand
(see Tokarzewski and Sokalski, 2004, Proposition
9), it is degenerate (i.e.,
). Since has full
row rank, all output-zeroing inputs are as in
Proposition 8. Note that
, i.e.,
the maximal output-nulling controlled invariant
subspace is nontrivial (comp. Remark 9).
C=
I
Z CB
CCBA Ker),,( =
∗
=
Example 2 In (1) let
⎥
⎦
⎤
⎢
⎣
⎡
=
⎥
⎦
⎤
⎢
⎣
⎡
−−
=
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎣
⎡
=
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎣
⎡
−−−
=
000
101
,
110
102
,
100
010
001
,
010
000
12/12
DC
BA
.
The system has no Smith zeros; on the other hand
(see Tokarzewski, 2002, p.188), it is degenerate and
is non-
trivial (comp. Remark 4).
}0xx:{),,,(
32
3
=+∈=
∗
RxDCBA=
5 CONCLUDING REMARKS
In this paper we presented necessary conditions for
output-zeroing inputs and the corresponding
solutions (Propositions 1 and 6) for a general class
of linear discrete-time systems described by the
state-space model (1). It is shown that if the first
nonzero Markov parameter has full row rank, the
necessary conditions become also sufficient
(Propositions 3 and 8). Necessary and sufficient
conditions for output-zeroing inputs for systems
with the first nonzero Markov parameter of full
column rank are given in Propositions 4 and 9.
Finally, necessary and sufficient conditions for
output-zeroing inputs under the assumption that the
set of invariant zeros is empty are presented in
Propositions 5 and 10.
A more detailed characterization of the output-
zeroing problem can be obtained by using singular
value decomposition of the first nonzero Markov
parameter.
REFERENCES
Aling, H., Schumacher, J.M., 1984. A nine fold canonical
decomposition for linear systems. Int. J. Contr., vol.
39, pp. 779-805
Basile, G., Marro, G., 1992. Controlled and
ConditionedInvariants in Linear System Theory.
Prentice-Hall. Englewood Cliffs, NJ.
Ben-Israel, A., Greville, T.N.E., 2002. Generalized
Inverses: Theory and Applications. Wiley. New York,
2
nd
edition.
Bourles, H., Fliess, M., 1997. Finite poles and zeros of
linear systems: an intrinsic approach. Int. J. Contr.,
vol. 68, pp.897-922.
Gantmacher, F.R., 1988. Theory of Matrices. Nauka.
Moscow (in Russian).
Isidori, A., 1995. Nonlinear Control Systems. Springer-
Verlag. London.
MacFarlane, A.G.J., Karcanias, N., 1976. Poles and zeros
in linear multivariabkle systems: A survey of the
algebraic, geometric and complex variable theory. Int.
J. Contr., vol.24, pp.33-74.
Rosenbrock, H. H., 1970. State Space and Multivariable
Theory. Nelson. London.
Rosenbrock, H.H., 1973. The zeros of a system. Int. J.
Contr., vol.18, pp. 297-299.
Schrader, C.B., Sain, M. K., 1989. Research on system
zeros:A survey. Int. J. Contr., vol. 50, pp. 1407-1433.
Sontag, E.D., 1990. Mathematical Control Theory.
Springer-Verlag. New York.
Tokarzewski, J., 2000. Zeros in discrete-time MIMO LTI
systems and the output-zeroing problem. Int. J. Appl.
Math Comput. Sci., vol. 10, pp. 537-557.
Tokarzewski, J., 2002. Zeros in Linear Systems: a
Geometric Approach. Warsaw University of
Technology Press. Warsaw.
Tokarzewski, J., Sokalski, L., 2004. Zeros,output-nulling
subspaces and zero dynamics in MIMO LTI systems.
ICINCO’2004 Proceedings., vol. 3, pp. 114-121
Wonham, W.M., 1979. Linear Multivariable Control: a
Geometric Approach. Springer-Verlag. New York.
ICINCO 2005 - SIGNAL PROCESSING, SYSTEMS MODELING AND CONTROL
142