Linear continuous time systems with nonsymmetrical
constrained control using non-symmetrical Lyapunov
function," In Proc.3th CDC IEEE-Arizona, 1992; (b
)"Regu1ator problem for continuous time systems with
nonsymmetrica1 constrained control, "IEEE
Trans.Aut. Control. vol.38, no10, pp 1556-1560,
October 1993.
Benzaouia A. and C. Burgat, (a)" Regu1ator problem for
linear discrete-time systems with nonsymmetrica1
constrained control", Int.J.cont, vo1.48, n06,pp.244-
245, 1988; (b)" Existence of nonsymmetrica1
Lyapunov functions for systems," Int.syst.Sci.,
vo120,pp 597-607, 1989; (c)" Existence of non-
symmetrical stable domains for linear systems," Linear
A1gebra Appl., vo1.l21,pp.217-231,1989.
Benzaouia A. and A. Baddou," Piecewise linear
constrained contro1 for continuous-time systems,"
IEEE Trans. Aut. Control, Vol. 44, no. 7, pp. 1477,
July, 1999.
Benzaoiua A.," Application du concept d'invariance
positive à l'étude des problèmes de commande des
systèmes dynamiques discrets avec contraintes sur la
commande". Thesis of UPS LAAS, No 88322, 1988.
Bistoris G.,"Existence of positively invariant polyhedral
sets for continuous time linear systems" Control theory
and advanced technology. voI.7,no3,ppA07-427,
September 1991.
Wredenhagen G.F. and P. R. Bélanger," Piecewise linear
LQ control for systems with input constraints,"
Automatica, vol.30, no3,pp. 403-416,1994.
Benzaouia A., "The resolution of equation XA+XBX=HX
and the pole assignment problem" IEEE. Trans.on
aut.Cont. vo1.39, nol0, pp2091-2094 ,October 1994.
B. Porter, "Eigenvalue assignment in linear multivariable
systems by output feedback," InU.contr.,voI.25, no.3,
ppA83-490, 1977.
W. Hahn, Stabilty of Motion, Berlin: Springer-Verlag,
1967.
P.O. Gutman and P.A. Hagander, "New design of
constrained controllers for liner systems," IEEE Trans.
Automat. Contr., vol. AC-30, pp. 22_23,
1985.
M. Vassilaki and G. Bistoris, "Constrained regulation of
linear continuous-time dynamical systems," Syst.
Contr. Lett., vol. 13, pp. 247-252, 1989.
C.A., Desoer and M. Vidyasagar, "Feedback Systems:
Input-Output Properties (New York: Academic Press),
1975.
Min-Yen Wu, " On stability of linear time-varying
systems", CDC-IEEE, pp. 1211-1214, 1982.
Makoudi M and Radouane L. (1992). On decentralized
discrete time varying feedback control. Advances in
modelling and analysis C, vol.33, NA, pp.29-38.
Makoudi M and Radouane L. (1991). On decentralized
time varying feedback control of linear continuous
systems. Troisième colloque magrébin sur les modèles
numériques de l'ingénieur. November, 26-29, Tunis.
Anderson B.O.D., Moore LB., 1981, "Time-varying
feedback laws for decentralised control", IEEE. Trans.
Autom. Control, vo1.26, N5, 11
33.
APPENDIX I
Matrix norm
∞
M
The matrix norm given by the vector norm:
⎟
⎟
⎟
⎠
⎞
⎜
⎜
⎜
⎝
⎛
=
−+
∞
i
2
i
i
1
i
i
q
z
,
q
z
maxmaxz
is giving by
∞
=
∞
∞
= Mz M
max
1z
then :
⎟
⎟
⎟
⎠
⎞
⎜
⎜
⎜
⎝
⎛
=
−+
∞
i
2
i
i
1
i
i
q
)Mz(
,
q
)Mz(
maxmaxMz
For this, we use the result of (Benzaouia and Burgat,
1989 – b, c)
∞
+−−+
∞
⎟
⎟
⎟
⎠
⎞
⎜
⎜
⎜
⎝
⎛
++
= z
q
)qM()qM(
,
q
)qM()qM(
maxmaxMz
i
2
i2i1
i
1
i2i1
i
Thus, =
∞
M
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎣
⎡
++
+−
∑
=
−+
∑
=
iji
2
j
2
ij
m
1j
i
2
j
1
iji
1
j
2
ij
m
1j
i
1
j
1
i
m
q
q
m
q
q
;m
q
q
m
q
q
maxmax
APPENDIX II
NOTATIONS: If x is a vector of
n
ℜ then:
)0,xsup( xand )0,xsup(x
i
-
iii
−==
+
, n,,1i …=
We will further note the following: for two vectors x, y of
n
ℜ :
yx ≤
(Respectively,
< ) if
ii
yx ≤ (respectively,
ii
yx < ) n,,1i …= .
n
I is the identity matrix of
nxn
ℜ ;
)A(σ
denotes the spectrum
of matrix A;
)Re(λ
the real part of the eigenvalue λ and
)A(
i
λ the ith eigenvalue of A.
)A(
the measure of A ,
)(Int
m
+
ℜ is the interior of
m
+
ℜ , whereas D∂ denotes
the boundary of D.
F Ker is the null space of matrix F.
ICINCO 2005 - ROBOTICS AND AUTOMATION
224