ADAPTIVE FUZZY SLIDING MODE CONTROLLER FOR THE SNORKEL UNDERWATER VEHICLE

Eduardo Sebastián, Miguel A. Sotelo

2005

Abstract

This paper describes a control system for the kinematic variables of an underwater vehicle. Control of underwater vehicles is not simple, mainlys due to the nonlinear, coupled and unknown character of system equations and dynamics. The proposed methodology makes use of a pioneering algorithm implemented for the first time in an underwater vehicle, and it is based on the fusion of a sliding mode controller and an adaptive fuzzy system, including advantages of both systems and relaxing the required knowledge of vehicle model.

References

  1. Antonelli G., Caccavale F., Chiaverini S. and Fusco G. 2003. A Novel Adaptive Control Law for Underwater Vehicles. IEEE Transactions on Control Systems Technology, 11(2), 109-120.
  2. Choi, S.K. and Yuh, J., 1996. Experimental study on a learning control system with bound estimation for underwater vehicles, International Journal of Autonomous Robots, 3(2/3), 187-194.
  3. DeBitetto, P.A., 1994. Fuzzy logic for depth control for unmanned undersea vehicles, Symposium of Autonomous Underwater Vehicle Technology. Cambridge, MA, 233-241.
  4. Espinosa F., López E., Mateos R., Mazo M. and García R. 1999. Application of advanced digital control techniques to the drive and trajectory tracking systems of a wheelchair for the disabled. Emerging Technologies and Factory Automation, Barcelona, 521-528.
  5. Fossen, T. I., 1994 Underwater vehicle dynamics. Baffins Lane, Chichester, John Wiley & Sons Ltd.
  6. Gee S.S., Hang C.C. and Zhang T. 1999. A direct method for robust adaptive nonlinear with guaranteed transient performance. Systems and Control Letters, 37, 275- 284.
  7. Sebastián, E. 2005. Control y navegación semi-autónoma de un robot subacuático para la inspección de entornos desconocidos. Doctoral diss., Universidad de Alcalá, Madrid.
  8. Slotine, J.J. and Li W., 1991. Applied nonlinear control. Englewood Cliffs. Prentice Hall.
  9. Wang, J. , Get S.S. and Lee T. H., 2000. Adaptive Fuzzy Sliding Mode Control of a Class of Nonlinear Systems. 3rd Asian Control Conference, Shanghai. 599-604.
  10. Yoerger, D.R. and Slotine J.E., 1991. Adaptive sliding control of an experimental underwater vehicle. IEEE International conference on Robotics and Automation, Sacramento. CA. 2746-2751.
  11. Yuh, J., 1994. Learning control for Underwater Robotics Vehicles. IEEE Control System Magazine.14(2) 39-46.
  12. Yuh J. 2000. Design and Control of Autonomous Underwater Robots: A Survey. Autonomous Robots, 8, 7-24.
Download


Paper Citation


in Harvard Style

Sebastián E. and A. Sotelo M. (2005). ADAPTIVE FUZZY SLIDING MODE CONTROLLER FOR THE SNORKEL UNDERWATER VEHICLE . In Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 972-8865-29-5, pages 255-259. DOI: 10.5220/0001164002550259


in Bibtex Style

@conference{icinco05,
author={Eduardo Sebastián and Miguel A. Sotelo},
title={ADAPTIVE FUZZY SLIDING MODE CONTROLLER FOR THE SNORKEL UNDERWATER VEHICLE},
booktitle={Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2005},
pages={255-259},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001164002550259},
isbn={972-8865-29-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - ADAPTIVE FUZZY SLIDING MODE CONTROLLER FOR THE SNORKEL UNDERWATER VEHICLE
SN - 972-8865-29-5
AU - Sebastián E.
AU - A. Sotelo M.
PY - 2005
SP - 255
EP - 259
DO - 10.5220/0001164002550259