the solution of the differential equation
dΨ(q
2
)
dq
2
= Ψ(q
2
)(Φ
q
2
M
2
Φ
−1
q
2
−
∂Φ
q
2
∂q
2
Φ
−1
q
2
)
= Ψ(q
2
)M
−1
C
2
(35)
Using Mathematica 4.1, one can check easily that
a solution of Equation (35) with initial condition
Ψ(0) = I
2
=
1 0
0 1
is
Ψ(q
2
) =
1
a
2
β(0) cos(q
2
)−a
2
β(q
2
)
a
1
β(0)
0
β(q
2
)
β(0)
!
(36)
where β(q
2
) =
p
a
1
a
3
− a
2
2
cos(q
2
)
2
.
Thanks to the Corollary 3.3, a solution T(q
2
) of
Equation (2) with T(0) = T
0
= I
2
, is
T(q
2
) = Ψ(q
2
)Φ
q
2
(q
1
)
=
1
a
2
β(0) cos(q
2
)−a
2
β(q
2
)
a
1
β(0)
0
β(q
2
)
β(0)
!
(37)
Therefore, the following change of coordinates
Θ
1
= q
1
+
Z
q
2
0
a
2
β(0) cos(s) − a
2
β(s)
a
1
β(0)
ds,
Θ
2
=
Z
q
2
0
β(s)
β(0)
ds, p = T (q) ˙q,
transforms the dynamics of the Cart-Pendulum into a
double integrator
˙
Θ = p, (38)
˙p = T(q )M
−1
(q)τ = u. (39)
Clearly This system is linear in the unmeasured
part of the state and a high gain observer can be con-
structed (M. Mabrouk, F. Mazenc and J.C. Vivalda,
2004).
5 CONCLUSION
A necessary and a sufficient condition for determin-
ing a state change of coordinate which transform an
Euler-Lagrange system into an affine system in the
unmeasured part of state was given. Obviously in the
case of one degree of freedom , a solution always ex-
ists. A case of higher order system, is for instance,
that of the cart-pendulum system (F. Mazenc and J.C.
Vivalda, 2002), the Tora system (Z. P. Jiang and I.
Kanellakopoulos, 2000) and the overhead crane (B. d
Andra-Novel and J. Lvine, 1990). We conjecture the
result several others problems in nonlinear control.
REFERENCES
Alberto Isidori. (1989). Non linear control systems. Segond
dition & Springer-verlag.
Besancon, G. (2000). Global output feedback tracking con-
trol for a class of lagrangian systems. Automatica.36,
PP. 1915-1921.
Besancon, G., Battilotti, S., Lanari, L. (1998). State trans-
formation and global output feedback disturbance at-
tenuation for a class of mechanical systems. IEEE
Mediterranean control conference, Alghero, Sardinia,
Italy, PP. 561-566.
B. d Andra-Novel and J. Lvine. (1990). Modelling and non-
linear control of an overhead crane. In M.A. Kashoek,
J.H. van Schuppen, and A.C.M. Rand, editors, Robust
Control of Linear and Nonlinear Systems, MTNS89,
volume II, pages 523529. BirkhŁuser, Boston, 1990.
C. J. Wan, D. S. Bernstein, and V. T. Coppola. (1996).
Global stabilization of the oscillating eccentric rotor.
Nonlinear dynamics, 10:49-62.
F. Mazenc and J.C. Vivalda. (2002). Global asymptotic out-
put feedback stabilisation of feedforward systems. Eu-
ropean journal of Control, vol. 8, no. 6, pp. 519-530.
J-B. Pomet, R. M. Hirschorn, W. A. Cebuhar. (1993). Dy-
namic output feedback regulation for a class of non-
linear systems. Math Control signals and systems,, 6,
pp. 106-124.
J.P. Gauthier and I. Kupka. (1994). obsrvervability and ob-
servers for non-linear systems Control and Optimisa-
tion,, vol. 32, no. 4, pp. 975-999.
L. Praly and Z.P. Jiang. (1993). Stabilization by output
feedback for systems with ISS inverse dynamics Syst.
Cont. Lett., vol. 21, pp. 19-33.
Loria, A and Pantely, E. (1999) A separation principle for
a class of Euler-Lagrange systems. Lecture Notes in
Information Sciences, N244, New directions in non-
linear observer design, Springer Berlin, pp. 229-247.
M. Mabrouk, F. Mazenc and J.C. Vivalda .(2004). On
Global Observers for some Mechanical Systems. Pro-
ceedings of 2nd IFAC Symposium on System Struc-
ture and Control (SSSC), Oaxaca, Mexique, Decem-
ber 2004.
M. Spong and Vidyasagar. (1989). Robot Dynamics and
Control, Wiley & Sons, New York.
Mazenc, F and Praly, L. (1996). Adding integrations,
saturated controls, and stabilization for feedforward
systems. IEEE TRANSACTIONS ON AUTOMATIC
CONTROL, Vol 41, no 11.
Z. P. Jiang and I. Kanellakopoulos. (2000). Global output-
feedback tracking via output feedback tracking for a
benchmark nonlinear system. IEEE Trans. on auto-
matic Control, 45(5): 1023-1027.
ICINCO 2005 - ROBOTICS AND AUTOMATION
48