0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
30 80 130 180 230 280 330 380
Malignant Benignant
REFERENCES
F. Kossentini, M.J.T. Smith, C.F. Barnes, 1995. Image
coding using entropy-constrained residual vector
quantization. In IEEE Transactions on Image
Processing ,4 , pp.1349-1357
V.Di Gesù, S.Roy, 2000. Fuzzy measures for image
distance, in proc of Advances. In Fuzzy Systems and
Intelligent Technologies , F.Masulli, R.Parenti, G.Pasi
Ed.s, Shaker Publishing , pp.156 -164.
C. Di Ruberto, M. Nappi, S. Vitulano, 1998. Different
Methods to Segment Biomedical Images. In Pattern
Recognition Letters, 18, nos. 11/13, pp. 1125-1131.
Qian Zhao et alt., 2004. Multi-resolution source coding
using Entropy constrained Dithered Scalar
Quantization. In Proc. of DCC’04 IEEE.
M. Toews, t. Arbel, 2003. Entropy of likelihood feature
selection for image correspondence. In Proc. ICCV’03
IEEE.
Melloul M., Joskowicz L., 2002. Segmentation of
microcalcification in X-ray mammograms using
entropy thresholding. In CARS 2002, H.U.Lemke et
al. Editors.
Kullback S.C., 1959. Information Theory and Statisitcs,
New York, N.Y.
E.T.Jaynes, 1962. In Brandies Theor.Phys.Lectures on
Statistical Physics, Vol. 3, New York, N.Y.
E.R.Caianiello, 1983. Theories:Lett.Al Nuovo Cimento,
Vo.38, 539.
A.Casanova, S.Vitulano, 2004.
Entropy As a Feature In
The Analysis And Classification Of Signals. In Series
on Software Engineering and Knowledge Engineering,
N.15 - World Scientific ISBN 981-256-137-4.
Heath M. et alt., 1998. Current status of digital database
for screening mammography, (Kluwer Academic
Pub.), pp. 457-460.
W.Richardson, 1992. Non linear filtering and multiscale
texture discrimination for mammograms. In
Mathematical Methods Med. Imag., Proc. SPIE 1768
pp. 293-305.
A. Laine et alt., 1992. Multiscale wavelet representation
for mammography feature analysis. In Mathematical
Methods Med. Imag., Proc. SPIE 1768 pp. 306-316
W.Qian et alt., 1993. Tree structured non linear filter and
wavelet transform for microcalcification segmentation
in mammography. In Biomedical Iimage Processing
and Biomedical Visualization, Proc. SPIE 1905 pp.
509-520.
Y. Yoshida et alt., 1994. Automated detection of clustered
microcalcifications. In digital mammograms using
wavelet processing techniques in Medical Imaging,
Proc. SPIE 2167pp.868-886.
R.N. Strickland, H.Hahn, 1996. Wavelet Transforms for
detecting microcalcifications. In Mammograms IEEE
Trans. on Medical imaging, Vol.15, No.2
A.Casanova, V.Savona, S.Vitulano, 2004. The Role Of
Entropy. In Signal Analysis And Classification: An
Application To Breast Diagnosis Medicon2004,
Ischia.
A.Casanova, M.Fraschini, 2003. HER: Application on
Information Retrieval. In Series on Software
Engineering and Knowledge Engineering Vol. 15:
150-159 ISBN:981-238-587-8.
Vitulano S.
et alt,. 2000. A hierarchical representation for
content-based image retrieval. In Jour. Of Visual
Lang. and Comp., 5, pp. 317-326.
I.W. Bassel, ,1992. Mammographic analysis of
calcification Radiol. Clin.No.Amer. , Vol. 30 pp 93-
105.
M. Heath, K.W. Bowyer, D. Kopans et alt., 1998. Current
status of the digital Database for Screening
Mammography. In Digital Mammography, Kluwer ,
pp 457-460 Academic Pub.
H. Barman et alt., 1993. Using simple local Fourier
domain models for computer-aided analysis of
mammograms. In Proc. 8
th
Scandinavian Conf. Image
Anal. Norway pp. 479-486.
Figure 2: Graphical representation of the two classes of benignant and malignant microcalcifications.
A NOVEL ENTROPY METHOD FOR CLASSIFICATION OF BIOSIGNALS
281