N T C TIME
SAT 2 0 0 1 1 0,19
OV 7 2 4 8 115 49,781
SAT 3 0 0 9 9 0,561
OV 4 25 2 7 116 67,427
SAT 0 0 0 0 0 0,371
OV 2 23 1 1 115 14,732
SAT 3 3 3 10 3 0,41
OV 5 102 102 4 115 40,538
SAT 4 4 4 1 5 32,01
OV 5 104 104 11 116 77,492
SAT 0 0 0 0 0 0,341
OV 4 103 103 4 116 15,322
SAT53311103 23,914
OV 7 115 115 23 23 7 115 40,669
SAT5551125 124,44
OV 5 116 116 23 23 4 116 53,817
SAT0000000 7,431
OV 2 115 115 22 22 1 115 14,541
SAT 6 0 0 1 0 10 4 3,565
OV 8 13 3 19 2 5 116 329,474
SAT 7 3 1 3 0 15 13 883,591
OV 4 14 4 2 1 7 118 1350,53
SAT0000000 0,371
OV 2 12 3 19 1 4 116 161,663
4D
RD
TC2
TMS
3D
RD
TC2
TMS
M
2D
RD
TC2
TMS
RD
TC2
TMS
1D
4 CONCLUSIONS
The behaviour of discrete control systems under
finite precision applied to any data to be stored in a
real hardware is dependent on the real hardware
implementation, that is, the real discrete algorithm
stored. Many different implementations have been
early studied and they must be analized under finite
precision to guarantee the good performance in real
implementations. One of the problems under finite
precision are the possible oscillations at the output
and internal registers called limit cycles.
This paper suggests a fast algorithm for the
analysis and characterization of those limit cycles
that appear in any recursive implementation. It has
been shown that presents a less computing time than
exhaustive formulations and produce results more
accurate than theoretical calculations. Besides it is
applicable to any type of implementation and type of
quantization scheme, since it uses the difference
equation system to describe the system.
Therefore it can be used as a part of design
process to select the best real implementation for the
controller when working under fixed-point
arithmetic.
REFERENCES
Table 2: Digital Control System Analysis
Bauer, P.H.; Leclerc, L.-J., Nov. 1991. A Computer-Aided
test for the Absence of Limit Cycles in Fixed-Point
Digital Filters. In ICEIS’99, IEEE Trans. Sig. Proc.,
vol. 39, no. 11, pp. 2400-2409.
Premaratne, K.; Kulasekere, E.C.; Bauer, P.H.; Leclerc,
L.-J., 1995. An Exhaustive Search Algorithm for
Checking Limit Cycle Behavior of Digital Filters.
Proc. IEEE ISCAS, Seattle, pp. 2035-2038.
B.D. Green, L.E. Turner., 1988. New Limit Cycle Bounds
for Digital Filters. In IEEE Trans. Circuits and
System, vol. 35 ,no.4,
S. Yakowitz, S.R. Parker., 1973. Computation of bounds
for digital quantization errors In In IEEE Trans.
Circuit Theory CT.-20 (July 1973) pp. 391-396, pp.
391-396
M. Utrilla Manso, F. López Ferreras; D. Osés-del Campo,
R. Jiménez-Martínez., 2000. A DSP-Oriented Fast
Algorithm to Detect and Characterize Limit Cycles in
Digital Filters. In Problems in Modern Applied
Mathematics ISBN 960-8052-15-7, pp.198-203, Ed.
World Scientific and Engineering Society Press
D. Osés-Del Campo; F.López-Ferreras; M. Utrilla-
Manso;F.Cruz-Roldán., 2000. Fast Algorithms for the
Analysis and Characterisation of Limit Cycles in
Fixed-Point Digital Filters. In Problems in Modern
Applied Mathematics ISBN 960-8052-15-7, pp.187-
191, Ed. World Scientific and Engineering Society
Press.
A. Djebbari, M.F. Belbachir, J.M. Rouvaen., 1998. A fast
exhaustive search algorithm for checking limit cycles
in fixed-point digital filters. In Signal Processing 69,
Elsevier Science pp. 199-205
Franklin, G. F. y Powell J.D., Nov. 1997.. Digital control
of dinamics systems. Addison Wesley
Kat. Ogata., Nov. 1996. Sistemas de Control en Tiempo
Discreto. Pearson Education 2
nd
Ed.
John B. Slaughter, 1963. Quantization Errors in Digital
Control System In IEEE Transactions on Automatic
Control. pp: 69-74..
P.Diniz, E Silva and S. Netto., 2002. Digital Signal
Processing: system and analysis, Cambridge
University Press.
C.L. Phillips, H.T. Nagle, 1990, Digital Control System
Analysis and Design, 2
nd
Ed, Prentice Hall.
A. V. Oppenheim, R. W. Schafer, 1999, Discrete-Time
Signal Processing, 2
nd
Ed, Prentice Hall.
ICINCO 2005 - SIGNAL PROCESSING, SYSTEMS MODELING AND CONTROL
160