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Abstract: For a singularly perturbed magnetic suspension system, two kinds of state feedback controllers are 
synthesized to account for the inherent instability of the open-loop plant with two-time-scale properties. 
Kharitonov polynomials, extremal vertex and uncertain Nyquist plot are employed to examine the maximum 
tolerance against system parameters uncertainties such that the stability of the closed-loop system is still 
retained.  Experimental simulations are reported to illustrate the robustness of designed controllers both in 
stability and performance.  At last, Interlacing Theorem is introduced to analyze the stability of uncertain 
suspension systems via the characteristic interval polynomials.  It is found that identical results are obtained, 
in comparison with extremal vertex approach. 

1 INTRODUCTION 

In general, two-time-scale systems are not 
uncommon in practice, such as electro-mechanical 
systems, power engineering and so on.  The major 
feature of this kind of singularly perturbed systems 
is the eigenvalues of the plant are located distinctly 
apart into two sectors: one near the origin on 
complex frequency plane and the other far away.  In 
other words, two-time-scale system can be analyzed 
as a coupled system composed by a slow subsystem 
and a fast subsystem. 

The singular perturbation technique is employed 
to decouple the slow subsystem and the fast 
subsystem by choosing an appropriate coordinate 
transformation such that the controller for the two-
time-scale system can be designed individually by 
two uncoupled models at first and then composed 
together.  Numerous researchers had applied this 
concept to synthesize the singularly perturbed 
industrial control systems.  Vournas et al. reported 
to design the generator voltage regulator by singular 
perturbation method (Vournas, 1995).  Flexible 
robot links have been discussed and presented 
frequently by this technique (Spong, 1989).  
Suspension of quarter-car model has been analyzed 
by two-time-scale model (Salman, 1988).  However, 
the robustness in singularly perturbed suspension 
has not much been addressed. 

In this work, the magnetic suspension system is 
investigated both in robust stability analysis and in 
control synthesis.  The parasitic parameter, that is 
crucial in singular perturbation system, is found to 
be strongly related to the inductance value of the 
electromagnet.  Unfortunately, some of the 
parameters are not only of small values, but also 
inherent in uncertainties.  Therefore, Kharitonov 
Theorem is introduced to analyze how robust the 
closed-loop system will be, from the viewpoint of 
stability with respect to system parameters 
variations.  Two kinds of controllers are synthesized 
and compared in experimental simulations.  It is 
concluded that the designed controllers exhibit 
dramatically robust enough to account for parameter 
uncertainties up to ± 50% variation away from the 
nominal values, while the performances of the 
closed-loop system are not detrimentally degraded.  

2 PROBLEM FORMULATION 

The magnetic suspension system (Fujita, 1995), 
shown in Figure 1, is inherently unstable so that a 
closed-loop control strategy is required. 
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Table 1: Parameters 
 

2.1 Equation of Motion 

The single degree-of-freedom dynamic model of 
magnetic suspension can be easily described as 
follows: 
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where f is the magnetic control force that is 
proportional to the square of coil current,  i(t), and 
inversely proportional to the square of total air gap, 
p(t)+ p0.  k is a constant. p0 is denoted as the offset 
determined by the measurement instruments and 
sensor locations.  e  represents the exerted control 
voltage applied via amplifiers set on the coil of 
electromagnets.  The interested parameters are 
tentatively considered as constants and listed in 
Table 1.  The linearized state space model can be  
obtained by taking Taylor’s Expansion around ( 
P+p0 , I ). I is the steady-state control current as the 
air gap reaches ( P + p0 ) that is the quasi-steady-
state value at which the gravity of the control force 
is balanced. 
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The measurement is the incremental 
displacement, p̂ , only, experimentally available 
from an eddy-current gap sensor. 
 
 
Parameter Symbol Value 
Mass of the iron ball m [kg] 1.75 
Steady-state gap 
between the magnet 
and the iron ball 

P [m] 2×10-2 

Steady-state current of 
the electromagnet 

I [A] 1.06 

Inductance of the 
electromagnet 

L [H] 5.08×10-2 

Resistance of the 
electromagnet 

R [Ω] 23.2 

Constants determined 
by experiment 

p0 [m] 10-4 

Coefficient of the 
electromagnetic force 

k [Nm2/A2] 2.9×10-4 

2.2 Singular Perturbation System 

From Eq.(4) and the actual experimental data in 
Table 1, it is obvious to find that the poles, { 
± 7.5355, -456.6929}, of the studied open-loop 
magnetic suspension system are located into two 
groups that are far away from each other.  That is, 
the pole, “-456.6929”, is about 65 times in distance 
from the origin of complex frequency plane, 
compared with the poles, {7.5355, -7.5355}.  It 
implies that in time domain the plant has the two-
time-scale property with respect to the state 
variables. Hence, Eq.(4)-(9) can be rewritten as the 
standard form of singular perturbation model as 
follows (Kokotovic, 1986): 
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Figure 1: Magnetic suspension system. 
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where ε  is called as the perturbation parameter that 
is assumed as a positive scalar but, to some extent, 
close to zero. The reduced model can be constructed 
by letting 0=ε . 
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xs and zs are the state variables of reduced model.  ys 
is the output of the slow subsystem.  The overall 
controller can be designed individually on the bases 
of slow subsystem model and fast subsystem.  For 
example, if the state feedback control strategy is 
taken, then: 
(a) on the base of slow subsystem, 

ss xHu 0=  (16) 

That is, to design su is based on Eq.(14a) and 
Eq.(14b) only. 
(b) on the base of fast subsystem, 

ff zHu 2=  (17) 

That is, to design fu is based on Eq.(14c) and the 
fast subsystem defined as follows: 

fff uBzAz 222 +=ε  (18a) 

ff zCy 2=  (18b) 

where sf zzz −= , sf uuu −= .  
To sum up, the overall state feedback can be 
constructed by direct composition by addition. 
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Its schematic control loops are shown in Figure 2. 

3 CONTROLLER DESIGN ON 
SINGULARLY PERTURBED 
SUSPENSTION SYSTEMS 

It has been well known that an appropriate controller 
design on the reduced perturbation model can be 
applied on the actual suspension systems.  The 
errors, of states or system output, are restricted in 
first-order zero approximation, i.e., )(εO , due to 
effect caused by reduction from exact model as long 
as the fast subsystem matrix of perturbed state-space 
model, A22(x, z, t) , is Hurwitz (Saksena, 1984).  In 
other words, partial state feedback can be utilized to 
ensure the asymptotic stability and performance of 
the actual system.  If the state feedback law is 
described as follows: 

[ ][ ] TTT zxHHu 21=  (20) 
Two kinds of feedback controllers are designed 

and compared in this work: Eigenvalues Assignment 
and Near-optimal approach.  

 

Figure 2: Composite state feedback. 
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3.1 Eigenvalue Assignment 

Under assumption of controllability of reduced slow 
subsystem, the eigenvalues can be assigned 
anywhere on the complex frequency plane.  At least 
the unstable poles can be moved to the stable region 
if the slow subsystem is stabilizable.  The feedback 
gain matrix is denoted as H that will be used later. 

3.2 Near-Optimal Approach 

A near-optimal linear quadratic regulator is designed 
against the performance index: 
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where the subscript”s” represents the approach is 
undertaken in slow-state model.  The associated 
steady-state matrix Riccati Equation can be obtained 
by traditional optimization methodology. 
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where 

s
T
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Therefore, the control command is generated by the 
feedback law: 
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T
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4 SIMULATION RESULTS 

As a gap sensor, a standard induction probe of eddy-
current type is placed closely near the bottom of the 
iron ball in Figure 1.  An electromagnet, of ”EI” 
shape in geometry, is used to generate magnetic 
force near the top of the controlled mass. A digital 
signal processor DSP-based real-time controller is 
implemented with TMS320C240. The data 
acquisition board MSP-77230 consists of a set of 12-
bit A/D and D/A converters.  With non-zero initial 
conditions, i.e., the state has an initial deviation, the 
closed-loop suspension system is regulated to be 
zero within 0.5 second either by near-optimal 
controller or eigenvalue assignment design, shown 
in Figure 3a.  The associated required control is 
plotted in Figure 3b.  From the viewpoint if stiffness 
of closed-loop system, a unit step response is 
examined and shown in Figure 4. quick response.   

Though the performance of the closed-loop system 
is degraded, subjected to ± 50% parameter variation 
in inductance L, under the identical LQ Controller 
designed on the base of nominal value, it is not 
detrimental and exhibits strongly robust, shown in 
Figure 5. 

5 ROBUST STABILITY 
ANALYSIS 

The main reasons that cause singular perturbation 
are: (i) presence of relatively small parasitic 
parameters, and (ii) inclusion of hign gain control 
loops.  In this study on magnetic suspension 
systems, it is evident that the inductance value of the 
electro-magnet is relatively small so that the singular 
perturbation problem emerges.  Even worse is that 
the inductance value changes in time. Practically, the 

Figure 3a: Time response under non-zero initial 
condition 
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Figure 3b: Control current for linear quadratic 
regulation 
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variation of the inductance can be constrained by a 
preset pair of upper and lower limits.  The 
parameters uncertainties and resulted robust stability 
problems are hereby to be investigated as follows.  

Applying the concepts of polynomial vertex and 
Kharitonov segments (Bhattacharyya, 1995), totally 
four Kharitonov Polynomials are to be 
simultaneously examined to determine the closed-
loop stability region against inductance uncertainty.  
The Eigenvalue Assignment approach is taken as an 
illustrative example in this report to analyze the 
stability robustness of the closed-loop system. 

The closed-loop system matrix under state 
feedback can be expressed in the form: 

)(ˆ HBAA −=  (25) 
Since the open-loop is a third-order system, the 

characteristic polynomial of the closed-loop system 

can be described as follows: 
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These four extremal polynomials are the complete 
independent characteristic polynomials to be 
examined for ensurance of stability of closed-loop 
uncertain systems.  The other twelve extremal 
polynomials are proved redundant and can be 
dumped at all (Bhattacharyya, 1995).The effect of 
parameter uncertainties in Nyquist plot of closed-
loop system are shown in Figure 6 and Figure 7, 
with ± 5% and ± 50% variation each, with respect 
to the nominal parameter value, respectively.  These 
two figures conclude that the controller, designed by 
Eigenvalue Assignment, is robust in stability, with 
maximum tolerance of ± 50% parameter variations.  
In other words, when the parameter uncertainty 
exceeds beyond ± 50%, the closed-loop control 
system becomes unstable. 

Another approach is to apply Interlacing Theorem 
(Bhattacharyya, 1995).  The odd-order and even-
order extremal polynomials of the closed-loop 
systems are defined as follows: 
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Let wjs = , the Equation set (28) can be rewritten 
in real or imaginary part as follows: 
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The values of the above four extremal 
polynomials versus frequency are shown in Figure 8. 
The intersections of extremal       

polynomials, )(max wK even , )(min wK even , )(max wK odd  and 

)(min wK odd , and frequency axis are Q1, Q2, Q3 and Q4 

respectively.  According to Interlacing Theorem, the 
inequality 0<Q1<Q2<Q3<Q4 implies that the closed-
loop system retains stable under the parameter 
uncertainties ± 5% each.  This result is identical to 
the one from uncertain Nyquist plot. 

6 CONCLUSION 

The inductance value in magnetic suspension system 
plays a crucial role for singular perturbation analysis 
and synthesis.  Since the two-time-scale properties 
dominate the extent of singularly perturbed stability  
 
and performance, the robustness with respect to the 
perturbation parameter has to be examined. The 
Kharitonov Polynomials and Interlacing Theorem 
both verifies that the controller design, either by 
eigenvalue assignment or near-optimal approach, 
would retain robust in stability.  It has been also 
proved by experimental simulations.  The 
performance, of the closed-loop system in the worst 
case of ± 50% inductance variation, is not greatly 
deteriorated.  This implies that the performance 
robustness is also achieved. 
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Figure 7a: Nyquist plot for uncertainties up to ± 50%. 

 

Figure 7b: Detail of ”A”. 
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Figure 8: Interlacing of extremal polynomials. 
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