Gamma band is moreover indicated with increasing evidences as playing a pivotal
role in perceptive [8] and cognitive motor tasks [13]. Present result, of gamma band
synchronization higher following stimulation of the thumb than of the little finger,
will suggest a new phenomenon: taking into account that thumb is functionally preva-
lent with respect to little finger, it could be hypothesized that the synchronization in
the gamma band codes for functional prevalence in the sensory hand representation,
strengthening previous results of our group [16].
References
1. Barbati, G., Porcaro, C., Zappasodi, F., Rossini, P.M., Tecchio, F, 2004. Optimization of
ICA approach for artifact identification and removal in MEG signals. Clinical Neurophysi-
ology 115:1220-32
2. Comon, P, 1994. Independent component analysis: a new concept? Signal processing
36:287-314
3. Crone, N.E., Miglioretti, D.L., Gordon, B., Lesser, R.P., 1998. Functional mapping of
human sensorimotor cortex with electrocorticographic spectral analysis: II. Event-related
synchronization in the gamma band, Brain 121: 2301– 2315.
4. Del Gratta, C., Pizzella, V., Tecchio, F., Romani, G.-L, 2001. Magnetoencephalography - a
non invasive brain imaging method with 1 ms time resolution Rep Prog Phys 64:1759-1814
5. Engel, A.K., Fries, P., Singer, W, 2001. Dynamic predictions: oscillations and synchrony
in top-down processing. Nat Rev Neurosci 2: 704-716
6. Engel, A.K., Singer, W., 2001. Temporal binding and the neural correlates of sensory
awareness, Trends Cogn. Sci. 5: 16– 25.
7. Hlustik P, Solodkin A, Gullapalli RP, Noll DC, Small SL, 2001. Somatotopy in human
primary motor and somatosensory hand representations revisited. Cereb Cortex. 11: 312-
321.
8. Meador, K.J., Ray, P.G., Echauz, J.R., Loring, D.W., Vachtsevanos, G.J., 2002 Gamma
coherence and conscious perception. Neurology 59: 847-854.
9. Okada, Y.C., Tanenbaum, R., Williamson, S.J., Kaufman, L., 1984. Somatotopic organiza-
tion of the human somatosensory cortex revealed by neuromagnetic measurements. Exp
Brain Res 56:197-205.
10. Penfield W, Boldrey E, 1937. Somatic motor and sensory representation in the cerebral
cortex of man as studied by electrical stimulation. Brain 60: 389–443.
11. Pfurtscheller, G., Lopes da Silva, F.H., 1999. Event-related EEG/MEG synchronization and
desynchronization: basic principles, Clin. Neurophysiol. 110: 1842– 1857.
12. Poggio, T., Bizzi, E, 2004. Generalization in vision and motor control. Nature 431:768-74.
13. Schoffelen, J.M., Oostenveld, R., Fries, P., 2005. Neuronal coherence as a mechanism of
effective corticospinal interaction. Science 308:111-113.
14. Shoham, D., Grinvald, A., 2001. The cortical representation of the hand in macaque and
human area S-I: high resolution optical imaging, J. Neurosci. 21: 6820–6835.
15. Tecchio, F., Padua, L., Aprile, I., Rossini, P.M., 2002. Carpal Tunnel Syndrome modifies
sensory hand cortical somatotopy: a MEG study. Hum Brain Mapping 17:28–36
16. Tecchio, F., Babiloni, C., Zappasodi, F., Vecchio, F., Pizzella, V., Romani, G.-L., Rossini,
P.M, 2003. Gamma synchronization in human primary somatosensory cortex as revealed
by somatosensory evoked neuromagnetic fields. Brain Res 986: 63-70
17.
Valente, G., Filosa, G., De Martino, F., Formisano, E., Balsi, M.: Optimizing ICA using
prior information. In BPC’05 Biosignals Processing and Classification - The International
Conference on Informatics in control, Automation and Robotics, Barcelona, Spain.
18