12. Platt, J., Cristianini, N., Shawe-Taylor, J.: Large margin dags for multiclass classification. In:
Advances in Neural Information Processing Systems (NIPS). Volume 12., MIT Press (2000)
547–553
13. Moreira, M., Mayoraz, E.: Improved pairwise coupling classification with correcting clas-
sifiers. In: European Conference on Machine Learning (ECML), Springer-Verlag (1998)
160–171
14. Hsu, C.W., Lin, C.J.: A comparision of methods for multi-class support vector machines.
IEEE Transactions on Neural Networks 13 (2002) 415–425
15. Mayoraz, E., Alpaydin, E.: Support vector machines for multi-class classification. In: Inter-
national Work conference on Artificial Neural Networks. Volume 2. (1999) 833–842
16. F. Tahahashi, S.A.: Optimizing directed acyclic graph support vector machines. In: Artificial
Neural Networks in Pattern Recognition (ANNPR). (2003)
17. Lu, B.L., Ito, M.: Task decomposition and module combination based on class relations: A
modular neural network for pattern classification. IEEE Transaction on Neural Networks 10
(1999) 1244–1256
18. Cardot, H., Lezoray, O.: Graph of neural networks for pattern recognition. In: International
Conference on Pattern Recognition (ICPR). Volume 2. (2002) 124–127
19. Campbell, C.: Constructive Learning Techniques for Designing Neural Network Systems.
San Diego: Academic Press (1997)
20. Kwok, T.Y., Yeung, D.Y.: Constructive algorithms for structure learning in feedforward
neural networks for regression problems. IEEE Trans. on Neural Networks 8 (1997) 630–
645
21. Friedman, J.: Another approach to polychotomous classification. Technical report, Dept. of
statistics, Stanford University (1996)
22. Crammer, K., Singer, Y.: On the learnability and design of output codes for multiclass prob-
lems. Machine Learning 47 (2002) 201 – 233
23. Klautau, A., Jevti
´
c, N., Orlitsky, A.: Combined binary classifiers with applications to speech
recognition. In: International Conference on Spoken Language Processing (ICSLP). (2002)
2469–2472
24. Klautau, A., Jevti
´
c, N., Orlitsky, A.: On nearest neighbor error-correcting output codes with
application to all-pairs multiclass support vector machnies. Journal of Machine Learning
Research 4 (2003) 1–15
25. Ko, J., Kim, E., Byun, H.: Improved n-division output coding for multiclass learning prob-
lems. In: International Conference on Pattern Recognition (ICPR). Volume 3. (2004) 470–
473
26. Phetkaew, T., Kijsirikul, B., Rivepiboon, W.: Reordering adaptive directed acyclic graphs:
an improved algorithm for multiclass support vector machines. In: International Joint Con-
ference on Neural Networks (IJCNN). Volume 2. (2003) 1605– 1610
27. Vural, V., Dy, J.G.: A hierarchical method for multi-class support vector machines. In:
International Conference on Machine Learning (ICML). (2004)
28. Savicky, P., Furnkranz, J.: Combining pairwise classifiers with stacking. In: Intellignent
Data Analysis (IDA). (2003)
29. Wolpert, D.: Stacked generalization. ’Neural Networks 5 (1992) 241–260
30. Zhou, Z.H.: Nec4.5: Neural ensemble based c4.5. IEEE Transactions on Knowledge and
Data Engineering (2003)
31. S. Hettich, C.B., Merz, C.: UCI repository of machine learning databases. Technical report,
University of California, Irvine, Dept. of Information and Computer Sciences (1998)
32. Quinlan, J.: C4.5 : programs for machine learning. Morgann Kauffman, San Mateo (1993)
61