References
1. Triñanes J. A.. Sistema de información basado en tededetección para ayuda a la explotación
operacional de pesquerías de túnidos y otras especies pelágicas. Tesis doctoral.
Departamento Electrónica e Computación, Universidad de Santiago. (Febrero 1998)
2. Iglesias A. Sistema de apoyo a la explotación operacional de pesquerías basado en técnicas
de inteligencia artificial y teledetección. Departamento de Electrónica y Computación,
Facultad de Física, Universidad de Santiago de Compostela. (Mayo 2003)
3. Cotos J. M. Dinámica y clasificación de estructuras oceánicas para aplicación operacional
de pesquerías utilizando teledetección e ingeniería de conocimiento. Tesis doctoral.
Departamento de Física Aplicada, Facultad de Física, Universidad de Santiago de
Compostela. (Septiembre 1994)
4. Wells W. M. Efficient Synthesis of Gaussian Filters by Cascaded Uniform Filters. IEEE
Trans. Pattern Analysis and Machine Intelligence-9 No. 2 March 1986.
5. Harlow C. A., Trivedi M. M., y Conners R. W. Use of texture operators in segmentation.
Optical Engineering, vol. 25 , no. 11, pp. 1200-1206, Nov. (1986)
6. Komatsu T., Aoki I., Mitani I., y Ishii T. Prediction o the Catch o Japanese Sardine Larvae
in Sagami Bay Using a Neural Network. Fisheries Science 60(4),385-391 (1994).
7. Aurelle D., Lek S., Giraudel J., Berrebi P. Microsatellites and artificial neural networks:
tools for the discrimination between natural and hatchery brown trout (Salmo trutta, L.) in
Atlantic populations. Ecological Modelling 120 313-324. (1999)
8. Dreyfus-Leon M. J. Individual-based modelling of fishermen search behauviour with neural
networks and reinforcement learning. Ecological Modelling 120 287-297. (1999)
9. Aussem A., Hill D..
Neural-network metamodelling for the prediction of Caulerpa taxifolia
development in the Mediterranean sea. Neurocomputing 30 ; 71-78 (2000)
10. Brosse S., Guegan J., Tourenq J., Lek S.. The use of artificial neural network to assess fish
abundance and spacial occupancy in the litoral zone of a mesotropic lake. Ecological
Modelling 120:299-311. (1999)
11. Maas O., Boulanger J., Thiria S. Use of neural networks for predictions using time series:
Illustration with the El Niño Southern oscillation phenomenon”. Neurocomputing 30: 53-
58. (2000)
12. Specht D. F. Probabilistic Neural Networks. Neural Networks, 3,109-118. (1990)
13. Zhang Q. and Benveniste A. Wavelet Neural Networks. IEEE Transactions on Neural
Networks, 3, 889-898.
14. Castillo E. and Gutiérrez J.M. Nonlinear Time Series Modeling and Prediction Using
Functional Networks. Extracting Information Masked by Chaos. Physics Letters A, Vol.
244, 71-84 (1998).
15. Castillo E., Cobo A., Gutiérrez J.M., and Pruneda E. Introduction to Functional Networks
with Applications. A Neural Based Paradigm. Kluwer International Publishers (1999).
16. Takagi T. y Sugeno M.. Derivation of fuzzy control rules from human operator`s control
actions. Proc. Of the IFAC Symp. On Fuzzy Information, Knowledge Representation and
Decision Analysis, pages 55-60. (July 1983)
17. Jang J.-S.R. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst.,
Man., Cybern, vol.23, no.5, pp. 665-685. (1993)
18. Gorman R. P. y Sejnowski, T. J. Learned Classification of Sonar Targets Using a Massively
Parallel Network. IEEE Transactions on Acoustics, Speech, and Signal Processing.
36:1135-1140. (1998)
19. Rumelhart D.E., Hinton, G. E. y Williams, R. J. Learning internal representations by errors
propagation. In Parallel distributed processing: Explotations in the microstructure of
cognitron. Vol. 1. D.E. Rumelhart and J.L. Mac Clelland, Cap. 8. MIT Press. (1986)
20. Iglesias A., B. Arcay, J.M. Cotos. Optimisation of fishing predictions by means of Artificial
Neural Networks, ANFIS, Functional Networks and Remote Sensing images. Expert
Systems with Applications. Aceptado y pendiente de publicación.
121