DIAMOND : A Physical Multiagent Systems Codesign
Approach

Jean-Paul Jamohand Michel Occelld
! Institut National Polytechnique de Grenoble, LCIS, 26000 Valence, France

2 Universie Pierre Mends, LCIS/INPG, 26000 Valence, France

Abstract. Multiagent systems are well suited to specify requirements for open
physical complex systems. However, up to now, no method allows to build soft-
ware/hardware hybrid multiagent systems. This paper presents an original method
for designing physical multiagent systems.

1 Introduction

Complex artificial cooperative physical systems are involved in application domains
as pervasive computing, intelligent distributed control or wireless computing. Physical
systems have a physical reality which does not apply only to the entities but also to the
environment in which they evolve. The system and its environment are strongly related.
In this context, the system elements integrate generally a software part and a hardware
part (electronic cards, sensors, effectors). The high dynamics, the great heterogeneity of
elements and the openess make a multiagent approach highly profitable for these artifi-
cial complex systems. But the existing multiagent design lifecycles have to be modified
to take into account software/hardware hybridation particularities.

This paper aims to present our approach called DIAMOND (Decentralized Iterative
Multiagent Open Networks Design) for the design of open multiagent physical complex
systems.

Our method can be qualified of codesign because it unifies the development of the
hardware part and the software part : the partitioning step is pushed back at the end
of the life cycle. A multiagent phase allows the management of collective features. A
component phase is used to design the elementary entities of the system (the agents)
and to facilitate the hardware/software partitioning. By lack of place in this paper, we
focus only on some steps of the method. They are described and illustrated through an
robotic design case study.

2 Overview of the DIAMOND method

Our iterative lifecycle. The DIAMOND method is built to design physical multia-
gent system. Four main stages, distributed on a spiral cycle (fig 1), may be distin-
guished within our physical multiagent design approach.dgfmition of needdefines

Jamont J. and Occello M. (2005).

DIAMOND : A Physical Multiagent Systems Codesign Approach.

In Proceedings of the 1st International Workshop on Multi-Agent Robotic Systems, pages 177-182
DOI: 10.5220/0001195901770182

Copyright © SciTePress



what the user needs and characterizes the global fundtierallhe second stage is a
multiagent-oriented analysishich consists in decomposing a problem in a multiagent
solution. The third stage of our method starts witheaeric designvhich aims to build
the multiagent system, once one knows what agents have tétdoutvdistinguishing
hardware/software parts. Finaly, threplementatiorstage consists in partitioning the
system in a hardware part and a software part to produce tie aod the hardware
synthesis.

/
/

Implementation

Definition of
5 need's
L — Situation
nelysis -

Social
phase Individual
phase

Generic design

Fig. 1. Our lifecyle

Most existing multiagent methods usually distinguish aamglysis and design phases
[1]. Very few methods deal with other phases. We can find femgxe a deployment
phase in MASSIVE [4] or Vowels [5]. This deployment phaseetakn our particular
field a great importance since it includes the hardwarelsoé partitioning. To cover
the whole lifecycle, different formalisms are required xpeess different things at dif-
ferent levels [2], for this reason we adopt a lifecycle udimgr stages mixing different
expressions using more or less formal paradigms and laeguagents, components,
Finite State Machines, Hardware Definition Languages). muost current lifecycle
used in multiagent methods is the classical cascade lifecyc

A last and major difference between DIAMOND and other mgkiats approach
is, as said previously, that DIAMOND unifies the developmehthe hardware part
and the software part. In a traditional system design, tittipaing step stands at the
beginning. In fact, a hardware requirement and a softwayeirement are created from
the system requirement. The software part of the systemiisusing a multiagent
method and its associated lifecycle.

The case study.To illustrate the various phases and activities of our methee
will use a case study dealing with robotic design. To makalkhstration easily under-



standable, we will adopt simplified system requirement® &kperimental conditions
are inspired by [3]. Robots evolve on a football field. A videoorder system makes it
possible to know the position of each robot as well as of tHe Bhaese positions are
periodically broadcasted to all robots. If the ball goes @iuthe limits of the field, a
robot of the nonfaulty team recovers the ball and plays (tlderois given by the ref-
eree). If a robot has no more battery or is dysfunctioning, tfatch is stopped (the
order is given by referee for human safety reason) and that islwithdrawn from the
field: all robots must be then motionless. At the beginning ofiatch the robots must
be located in their camp and the referee decides to give tiukegerole to one robot of
each team. So, the game is open and the team, which markgtier humber of goals
in 90 minutes, wins.

3 Definition of needs

This preliminary stage begins by analysing the physicatexdrof the system (identify-
ing workflow, main tasks, etc...). Then, we study the diffe@ctors and their participa-
tive user cases (using UML use case diagrams), the senégagements (using UML
sequence diagram) of these actors.

The second step consists in the study of the modes of stepst@wal This activity
is very significant because it enable to structure the glolating of the system. It is
generally wishable that the system functions in autononoy.vilorking with physical
systems imposes to know all the other possible behaviogalg when the system
starts, when it goes under maintenance etc.

This activity puts forward a restricted running of the systét allows to specify the
first elements necessary for a minimal fault-tolerance.éduwer, it enable to identify
cooperative (or not) situations and to define recognitiatestin order to analyse, for
example, the self-organizational process of an applinafitis activity allows to take
into account the safety of the physical integrity of the ageossibly plunged in the
physical system.

We have defined 15 differents modes that we regroup in 3 fasiilihestops modes
which are related to the different procedures for stoppimgjta define associate recog-
nition states. Thateps modewhich focuses on the definition of the recognition states
of normal functionning, test procedures etc. Ta#ing operations modewhich con-
centrates the procedure allowing to a human maintenanoeteavork in the system
or to specify rules for restricted running.

Application to our case study.We find the following actors. Theferee (logical actor)
manages match parameters (choice of a goalkeeper and a caegch team, verifica-
tion that robots respect the rules) and authorise the humaittidraw a robot when all
robots are motionless. Theanager (physical actoryithdraws robot when a problem
occurs. Theball (physical actor)moves under the robot actions. The opposing team
(physical/logical actorshares the field with us. Theamera systerroadcasts the co-
ordinate of each robot and of the ball.

There is two user cases. Thenfigurationexpresses that the referee chooses a field and



a goalkeeper for each team. This user case triggers anathertbegameopening the
game. For our application, the identified modes are:

1. Modes of stops: Two modes of stops must be characterizbdr modes are not
exploited.

— Idle: In a idle mode, the robots must be motionless.

— Stops requested on normal mode : when a robot dysfunctiaradbe referee
can decide to freeze the game.

2. Modes of steps:

— Normal mode: in this mode all the robots must answer to thereefrequests,
there is no emergency stop.

— Mode of preparation: during the preparation phase the sob positioned
on the ground. Robots should neither move nor use their eetid his mode
ends when the parameters setting period starts.

— Mode of test: one can want to calibrate the maximum powertionsng.

3. Failing modes: only the management of the emergency stoglévant in our ap-
plication.

— Mode of stop aiming to ensure the safety: If an emergency istagtivated,
robots do not have the right to move or use their effectors.

4 Multiagent-oriented analysis

The multiagent stage is handled in a concurrent manner adiffeyent levels. At the
society level, the multiagent system is considered as aaviilthe individual level,
the system’s agents are built. This integrated multiagesiosh procedure encompasses
five main phases discussed in the following.
Application to our case study : situation phaseEach robot can know its geographical
position, the position of the ball and of the other robotsnBmsions of the ground are
known and the field of each team is communicated at the bewjrofieach part. The
positions of each robot can be memorized at different datestimate displacements,
directions of the robots and their trajectories. The tit@jgcof the ball obeys to physical
law. Agent can estimate this trajectory and act on it.

The active entities are the robot-players. The ball is aipagntity which obeys to
agent action (shooting) by a displacement according to liysip laws.

Application to our case study : Individual phase.The agent world representation
consists in a collection of triplets (id,x,y) and in the fieldnension.

In our application, robot players are modeled by agentsirTindividual capabilities
can be specified using a tree to show the different actiondeve

We specify the agent context with a context diagram (see fig 3)

After one iteration to take into account the society phasdiyvidual behaviors are
implemented using finite state machine. We can define an agma goalkeeper be-
havior. Other agent can alternate two differents behavghsoter or defender). For
example, the goalkeeper behavior define that the agent muestsato be on a possible
trajectory of shooting.



SITUATED ACTIONS COMPOSED ACTIONS PARAMETRED ACTIONS PRIMITIVE ACTIONS
order 2 order

translate(speed)
catchBall
—
v GOlxy)
goal_block
rotate(angle)

/ Shoot
)

shoot(type

Pass(id_friend)—\\.

EjectBall(strength)

Pass

Fig. 2. Actions scheme

Reset button
Rotation motor -

ngle ireset
! send_msg wireless
emission module
Translation motor speed

strengh

P . wireless
o reception module
Ball eject: o
<" eject order | datefou

Fig. 3. Context diagram

receive_ms

Application to our case study : Society phaseRepresentation of others: The other
players positions can be known by the capture of informatiom the video system
(WIFI module). Their directions can be estimated if agent weemorize the previous
positions. The friend intention can be announced.

Interactionsbetween the agents are carried out by exchange of messagageAt
must be able to communicate with its team to diffuse its itiven It can use a peer-to-
peer communication to solve a conflict or to choose a trajgetith a friend.

Collaborative actiongan be instantiated : a player can request the ball when it has
an occasion of shooting. It can ask somebody to change @ositiattract an opponent
elsewhere.

Organization.A TEAM according to the requirement is composed of a goalkeep
and three other agents which can be SHOOTER or DEFENDER.

Collective behaviorAs seen previoulsy, finite state machines can implementied co
lective behavior.

Application to our case study : Integration phase.We illustrate this phase with two
examples.
Influence 1: If agent wants to move to a point, somebody (friennot) can be on its
trajectory.
Correction 1: If the agent on the trajectory is a friend, therst owning the ball has the



priority.

Influence 2: Two agents request the ball for shooting.

Correction 2: Agent use an election protocol (they exchamgestimation of their
sucess probabilities).

5 Conclusion

We work currently on the tool associated with the methodweapropose. It is created
using the Java language. The part which relates to the aneatiagents creation with
components, manual partitioning and automatic generaficnde are operationnal.

This work proposes some innovative contributions in tertmydifrid software/physical
multiagent lifecycle. It proposes components used as tfmoléntegration, allowing
software or hardware derivation. Components are thus usisi approach as units of
implementation but further as unit of design allowing theeasbly.

Our future work concerns the MASC tools (MultiAgent Systewd€sign) associ-
ated with the DIAMOND method.

References

1. Scott A. DeLoach, Mark F. Wood, and Clint H. Sparkman. Multiagsgistems engineering.
International Journal of Software engineering and Knowledge Enginge11(3):231-258,
2001.

2. Daniela E. Herlea, Catholijn M. Jonker, Jan Treur, and Niek J. E. \Ajrds. Specification of
behavioural requirements within compositional multi-agent system deBidiNCS volume
1647, pages 8-27. Springer-Verlag, 1999.

3. H.-P. Huang, C.-C. Liang, and C.-W. Lin. Construction and sodgeamics analysis for an
integrated multi-agent soccer robot system Nhitl. Sci. Counc. ROC(Ayolume 25, pages
84-93, 2001.

4. J. Lind. Interative Software Engineering for multiagent systems: The MASSIVEol)etbl-
ume 1994 oL NCS/LNAI Springer Verlag, 2001.

5. P.-M. Ricordel and Y. Demazeau. From analysis to deployment: ii-agent platform sur-
vey. InProceedings of the First International Workshop on Engineering Siesien the Agent
World, pages 93-105, London, UK, 2000. Springer-Verlag.



