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Abstract. A constraint function expressing a priori information about the 
structure of data recorded in a MEG experiment is used to bias ICA towards a 
more realistic decomposition. To do so, a function measuring sensitivity to the 
stimulation considered is added to the usual contrast function to be optimized. 
Experiments show that the proposed algorithm effectively succeeds in 
separating physiologically significant activities that standard ICA fails to 
distinguish in half of the cases. 

1   Introduction 

Physiological activity in the brain can be evaluated by means of non-invasive 
techniques based on measurement of the electric or magnetic field generated by 
electrical neuronal currents (e.g. electroencephalogram - EEG, magnetoencephalo-
gram - MEG). However, relevant signals, related to significant activity, are mixed and 
embedded in unstructured noise and in other physiological signals, non relevant to the 
desired observation. For this reason, extraction of information from such signals 
amounts to blind separation of sources in presence of noise, filtering, and interference, 
at least as long as we may assume all phenomena to be linear, as is usual and most 
often reasonable. 

One of the most promising techniques to tackle such task is Independent 
Component Analysis (ICA) [1,2]. Several studies have proved its effectiveness in 
extracting relevant activations from MEG and EEG signals [3-6]. Nevertheless, in 
some cases signals are not effectively separated in single components, as they can 
remain partially mixed, or split into more than one component. Moreover, ICA may 
fail in presence of strong noise, showing very rapid degradation of performance 
under a certain SNR [7]. 
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ICA does not take other information into account than the statistics of the data. 
However, sometimes quite accurate information on some parameters of the signals 
we want to separate is known, and more often only general characteristics are 
known, such as regularities generally valid on a broad class of natural signals. 

Some of the authors have developed a modified ICA algorithm that takes 
available general a priori information into account explicitly, and proved its 
effectiveness on artificial [8] and real fMRI [9] data. In this paper, such technique is 
applied to MEG recordings taken in experiments concerning individual finger 
stimulation. We show how addition of appropriate information to the separating 
algorithm allows to distinguish more satisfactorily activity from neural networks 
devoted to individual finger representation, with respect to standard ICA. 

The paper is organized as follows. Section 2 describes the physiological 
background, and reviews the modified ICA technique employing additional 
information, and experimental methods. In section 3 we discuss results, and 
conclusions are drawn in section 4.  

2   Physiological Background, Materials and Methods 

2.1   EEG and MEG 

Neurophysiological techniques (EEG and MEG), by allowing direct investigation of 
the electrical neuronal activity, obtain measures with the same time resolution as 
the cerebral processing itself. For this reason, EEG and MEG could be used to 
investigate cerebral connectivity as expressed in the inter- and intra-regional 
activity synchronization. The crucial problem is to gain access to the inner neural 
code, starting from the extra-cranial recorded EEG and MEG raw signals. The main 
approach has been, up to now, to solve the so-called ‘inverse problem’, i.e. to use 
Maxwell’s equations to calculate spatial distribution of the intra-cerebral currents 
starting from the magnetic and/or electric field detected in a wide enough area of 
the scalp surface. Substantial theoretical and technical difficulties are present in 
solving the inverse problem [10].  

A different approach has been recently considered, based on statistical properties 
of sources composed in the observed signals: ICA was applied by the EEG/MEG 
researchers not only as a computational technique able to remove artifacts, but also 
as a powerful tool in discriminating functionally different neural sources, possibly 
overlapping in time and space [11-13]. 

2.2   ICA with Prior Information 

ICA applies to blind decomposition of a set of signals x that is assumed to be 
obtained as a linear combination (through an unknown mixing matrix A) of 
statistically independent non-Gaussian sources s: 

Asx = . (1) 
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Sources s are estimated (up to arbitrary scaling and permutation) by independent 
components (IC) y as 

Wxy = , 

where unmixing matrix W is to be estimated along with the ICs. 
ICA can be cast as an optimization process that maximizes independence as 

described indirectly by a suitable contrast function. As ICA only takes cumulative 
statistics of signals into account, other structural aspects remain irrelevant to the 
decomposition. For instance, temporal order of samples of a signal defined over 
time is indifferent. 

Biomedical signals can often be assumed as generated through a linear mixing 
process as Eq. 1, where independent sources are supposed to model activities (of the 
brain in this case) that originate from separate causes, but coexist in adjacent and 
possibly overlapping volumes. In fact, strict independence of such sources is 
probably in many cases unrealistic, but using such hypothesis has proved very 
effective in many contexts, even if a posteriori we may observe that perfect 
independence is never achieved. 

Often, however, we know more about such causes and signals. In particular, when 
a stimulation protocol is applied, we may make strong assumptions on the localiz-
ation of response in time. 

Some of the authors [8] have developed a modified ICA technique that explicitly 
uses such additional information to bias the decomposition procedure towards 
solutions that satisfy such assumptions, trading off some independence of the 
extracted signals. The method is based on optimizing a modified contrast function 

HJF λ+=  

where J is any function as normally used for ICA, while H accounts for the prior 
information we have on sources. Parameter λ is used to weigh the two parts of the 
contrast function. If λ is set to zero, maximization of F leads to pure independence. 

2.3   Experimental Setup  

Magnetoencephalographic data were recorded from 16 healthy volunteers (8 
female, mean age 31±2 years), during separate electrical stimulation of their right 
thumb or little finger. Ring electrodes were used to deliver the stimulus which 
consisted of 0.2-ms-long electric pulses (cathode proximal), with an inter-stimulus 
interval of 631 ms; stimulus intensities were set at about twice the subject’s sensory 
threshold. The subjects had signed an informed consent and the experimental 
protocol followed the standard ethical directives of the declaration of Helsinki. 

Brain magnetic fields were recorded from the left rolandic region, i.e., contra-
laterally to the stimulation, after positioning the central of the 28 sensors of the 
MEG system over the C3 site of the International 10–20 electroencephalographic 
system; a total area of about 180 cm2 was covered. Data were filtered through a 
0.16–250-Hz bandpass and gathered at 1000-Hz sampling rate. The noise spectral 
density of each magnetic sensor was 5–7 fT/Hz1/2 at 1 Hz. About 280 single trials 
were recorded for each of the two stimulus conditions.  
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2.4   Functional Constraints 

In order to identify neural networks devoted to individual finger central 
representation, the ‘reactivity’ to the stimuli was taken into account. It was defined 
as follows: 
1) the evoked activity (EA) was computed separately for the two sensorial 

stimulations, by averaging signal epochs centered on the corresponding stimulus 
(EAT, thumb; EAL, little finger). 

2) the reactivity coefficient (R) was computed as 
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with X = T, L, and t=0 corresponding to the stimulus arrival. The time interval 
ranging from 20 to 40 ms includes the maximum activation [14] and the baseline 
(no response) was computed in the pre-stimulus time interval (-30 to -10 ms).  
3) The constraint function  was then chosen as XH
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and k is a suitable parameter measuring the required minimum response.  
In order to separate contributions generated by individual stimulations, we started 

by using constraint , and extracted a single component. Then, after projecting 
residuals on the orthogonal space w.r.t. the extracted component, we repeated the 
procedure using . From then on, we applied a composite 

LH

TH TL HHH += . This 
procedure was motivated by the fact that thumb representation is physiologically 
larger than little finger one. Therefore, by operating in this way we meant to favour 
extraction of the naturally weaker components first. 

The same data were also analyzed by unconstrained ICA, using the popular 
fastICA algorithm [15]. Both algorithms were applied after the PCA whitening 
without dimensionality reduction. 

For comparison, the positions of the known markers of signal arrival in the primary 
sensory cortex, occurring at around 20 ms from the stimulus (M20), were calculated 
by standard procedure of averaging original channel signals. 

As a main criterion to evaluate the ‘goodness’ of extracted ICs in representing 
individual fingers, we observed their spatial position. To this aim, ICs representing 
thumb and little finger were separately retro-projected, so as to obtain their field 
distribution. A moving equivalent current dipole (ECD) model inside a 
homogeneous best-fitted sphere was used. ECD coordinates were expressed in a 
right-handed Cartesian coordinate system defined on the basis of three anatomical 
landmarks (x-axis passing through the two preauricolar points directed rightward, 
the positive y-axis passing through the nasion, the positive z-axis consequently). 
Only sources with a goodness-of-fit exceeding 80% and within a pre-defined 
physiological volume (a cube of 5 cm side, centred in x=-33, y=9, z=100, i.e. the 
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mean centre of hand cortical representation in a healthy population) [14] were 
accepted. It is to be noted that the field distribution obtained by retro-projecting 
only one IC, is time-invariant up to a scale factor. Consequently, the subtending 
current distribution (ECD position in our case) is time-independent. 

Table 1. Average and s.d. across subjects (number of subjects, #) of ICT and ICL 
characteristics, fast_ICT, fast_ICL and fast_ICT;L (a unique IC responding best to both 
stimulations, found in 50% of the cases using fastICA): spatial position SX (x, y, z) with their 
explained variance (e.v.); the evoked activity indexes (RT and RL). Mean M20T and M20L 
positions are reported. 

   SX (mm)   
 # e.v. x y z RT RL 

ICT 16 0.95±0.05 -41±9 9±12 88±11 11.6±4.1 1.2±1 
ICL 16 0.94±0.05 -35±11 5±12 100±14 7.2±5.5 13.3±5.3 

fast_ICT 8 0.94±0.05 -44±13 10±38 83±19 8.5±5.1 1.9±3.5 
fast_ICL 7 0.97±0.04 -38±13 6±22 98±11 4.3±4.7 9.2±7 

fast_ICT;L 8 0.94±0.08 -38±14 9±6 96±13 7.9±5.2 8.4±3.6 
M20T 16 0.96±0.18 -42±8 11±11 91±10   
M20L 16 0.94±0.06 -33±10 6±13 100±10   

3   Experimental Results 

The activity of the source representing a finger is compared when stimulating the 
finger itself with respect to when an other finger is stimulated. To do this, the defined 
indexes RT and RL, describing respectively the responsiveness to thumb and little 
finger stimulations, were both tested for each of the two functional sources ICL and 
ICT . The evoked activity of the two extracted sources (ICT and ICL), resulted 
significantly higher when the finger that source represents was stimulated (Table 1, 
RT > RL for thumb source (ICT), p <.0001 ; RL > RT for little finger source (ICL), 
p=.001).  

Components obtained by fastICA failed in half of cases (8 out of 16) to separate 
thumb and little finger response: in those cases a unique IC was selected that 
responded best to both stimulations (fast_ICT;L) . Moreover, in one subject out of the 
eight showing the thumb source (fast_ICT), the little finger one lacked. Therefore, in 
the fastICA case, RL and RT were tested for the three types of sources obtained, 
including for each test only those subjects for whom the components considered were 
indeed found. Results were positive for two out of the three comparisons (Bonferroni 
post-hoc comparisons): RL > RT for fast_ICL (p=0.02) and for fast_ICT;L versus 
fast_ICT (p=0.04), but not significantly difference was found between fast_ICL and 
fast_ICT;L (p=0.95). RT did not result significantly different for any contrast between 
pairs of obtained sources. 

As shown in Table 1, dipole coordinates (x,y,z) were computed from the two retro-
projected components ICT and ICL in our 16 subjects group. We have to note that for 
4 subjects, localization of the retro-projected ICT was not possible (variance explained 
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< 0.8, dipole not accepted). The same retro-projection was performed for the fastICA 
sources.  

A General Linear Model (GLM) for repeated measures was estimated to test for 
differences in source localization: as dependent variables the 3-dimensional 
coordinates vectors obtained for each subject were used, with the two levels Finger 
(Thumb, Little) as within-subjects factor. Factor Finger resulted significant 
(F(3,9)=16.512, p=0.001), corresponding to ST (position of retro-projected ICT) 
significantly lateral, anterior and lower with respect to SL (position of retro-projected 
ICL). This was in agreement with M20 ECD positions when stimulating respectively 
thumb and little finger (Table 1). 

Testing the seven subjects for whom thumb and little finger response was separated, 
for the position of retro-projected ICs (fast_ST and fast_SL resp.), factor Finger 
resulted not significant at the standard threshold p value of 0.05 (F(3,4)=4.37, p=0.09; 
x and y axes not significantly different, z axis at p=0.06). Moreover, dipole 
coordinates of fast_ST;L (retro-projected fast_ICT;L) with respect to fast_ST  and 
fast_SL resulted not significantly different (Kruskal-Wallis test, p>0.05).       

 
It can be noted that the first two functionally-constrained components (ICT and 

ICL), well positioned in agreement with homuncular distribution, were characterized 
by non-Gaussian kurtosis values: normalized kurtosis median=0.84; interquartile 
range=[0.36-1.02]. The remaining components, having excluded the artifactual 
abnormally peaked ones [5], tended to Gaussianity, confirming that the main ICA 
criteria work properly: normalized kurtosis median=0.11; interquartile range=[0.05-
0.23]. This difference was found statistically significant (Mann-Whitney p-
value<0.0001). 

Kurtosis differences in the fastICA components resulted less evident between 
task-related and non task-related components: fast_ICT, fast_ICL and fast_ICT;L had 
normalized kurtosis median=1.5; interquartile range=[0.88-1.99]. The remaining 
components had normalized kurtosis median=0.91; interquartile range=[0.43-1.5], 
Mann-Whitney p-value=0.06. 

4   Conclusions 

The proposed procedure proved able to extract somatotopically consistent sources. 
A specific added value of the ICA approach lies in detecting the complete time 
course of the estimated sources, trial by trial, instead of describing the activations 
by averaging all sensors channels and only in specific instants, as usually done in 
the standard procedures. 

On the other hand, standard ICA failed in half of the examined subjects to 
separate the two sources, producing in that cases a "mixed finger" source, both in 
spatial position and in task reactivity.  
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