
ASPECT IPM: TOWARDS AN INCREMENTAL PROCESS
MODEL BASED ON AOP FOR COMPONENT-BASED SYSTEMS

Alexandre Alvaro, Eduardo Santana de Almeida , Silvio Romero de Lemos Meira
Federal University of Pernambuco and C.E.S.A.R – Recife Center for Advanced Studies and Systems

Daniel Lucrédio, Vinicius Cardoso Garcia, Antonio Francisco do Prado
Computing Department – Federal University of São Carlos, Brazil

Keywords: Incremental Process Model, Reuse, Components, Aspect-Oriented Programming.

Abstract: In spite of recent and constant researches in the Component-Based Development area, there is still a lack for
patterns, processes and methodologies that effectively support either the development “for reuse” and “with
reuse”. This paper presents Aspect IPM, a process model that integrates the concepts of component-based
software engineering, frameworks, patterns, non-functional requirements and aspect-oriented programming.
This process model is divided in two activities: Domain Engineering and Component-Based Development.
An aspect-oriented non-functional requirements framework was built to give support in these two activities.

1 INTRODUCTION

One of the most compelling reasons for adopting
component-based approaches is the premise of
reuse. The idea is to build software from existing
components primarily by assembling and replacing
interoperable parts. The implications for reduced
development time and improved product quality
make this approach very attractive (Krueger, 1992).
In this sense, one of the most important approaches
for achieving reuse is the Component-Based
Development (CBD).

In order to make reuse effective, it must be
considered in all phases of the software development
process (Krueger, 1992), (Jacobson, et al., 1997),
(Heineman, et al., 2001), (Szyperski, 2002).
Therefore, CBD must offer methods and techniques
that support different activities, from the
components identification and specification to their
design and implementation in a component-oriented
language. Besides, CBD must use interrelations
among components already in existence, which has
been previously tested, aiming to reduce the
complexity and the development costs.

Another important point to reach these benefits is
the Non-Functional Requirements (NFRs) treatment.
Unfortunately, NFRs many times are not considered

in components development activities. There are
some reasons that can help us to understand why
these requirements are not explicitly dealt with
(Rosa, 2001). In particular, developers find it very
difficult to deal with different NFRs because they
often compete with each other and with the
functional requirements. When proper treatment is
not given to NFRs, these conflicts may lead to
several problems, such as low modularity and code
interlacement.

To help to overcome the difficulties of treating
different NFRs, Aspect-Oriented Programming
(AOP) (Kiczales, et. al., 1997) may be a good
choice. With AOP it is possible to create, for the
functional requirements, a group of components
expressed in a programming language (e.g. Java),
and for the NFRs, a group of aspects, related to the
properties that affect the application’s behaviour.
Using AOP, the NFRs can be easily manipulated,
without causing impact in the business code, since
these codes are not interlaced in several units of the
system. Besides, AOP can facilitate the reuse of the
NFRs, requiring little or no modification, since they
are isolated from the rest of the code.

In order to aid the Software Engineer in the
integration of the NFRs into design decisions during
the software development process, a framework may
be used to represent, organize and analyze NFRs

226
Alvaro A., Santana de Almeida E., Romero de Lemos Meira S., Lucrédio D., Cardoso Garcia V. and Francisco do Prado A. (2005).
ASPECT IPM: TOWARDS AN INCREMENTAL PROCESS MODEL BASED ON AOP FOR COMPONENT-BASED SYSTEMS.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 226-232
DOI: 10.5220/0002514302260232
Copyright c© SciTePress

(Mylopoulos, et. al., 1992), increasing quality and
reducing time and costs.

In this context, motivated by ideas of reuse, CBD,
NFRs and AOP, this work proposes and evaluates
Aspect IPM, an Incremental Process Model based on
AOP for Component-Based Systems.

2 ASPECT IPM

In order to enable CBD with aspect-oriented support
for NFRs, an Incremental Process Model (Aspect
IPM) was defined. An overview of this process
model can be found in (Alvaro, et al., 2004).

The Aspect IPM is divided in two activities. In
the first activity, Domain Engineering (DE), the
problem domain requirements are identified and
organized in a series of reusable information.
Software components are specified, designed –
including the NFRs design, which were performed
through aspect-oriented NFRs framework support –
and tested, being then stored into a repository. In the
next activity, Component Based Development
(CBD), the software engineer may build applications
that reuse these components, consulting the
repository to find and reuse them. Still, the aspect-
oriented NFRs framework aids the software engineer
in the application development.

2.1 Domain Engineering (DE)

Domain Engineering (DE) has been one of the most
used approaches to enable reuse-based development
(Griss, et al., 1998). It involves the identification and
development of reusable assets within an application
or a domain (Griss, 1997).

The software development based on DE allows
the production of applications through accumulated
knowledge (i.e. activity of collecting, organizing,

and storing past experience in building systems) in a
particular domain, as well as providing an adequate
means of reusing these assets (i.e. retrieval,
dissemination, adaptation, assembly, and so on)
when building new systems (Jacobson, et al., 1997).

In Aspect IPM, the Domain Engineering is
performed in four phases: Domain Analysis, Domain
Design, Domain Implementation and Domain Tests
and Deployment, according to Figure 1. Each phase
contains some steps that aid the Software Engineer
in the DE. A detailed description of each phase of
the Domain Engineering activity is presented next.

2.1.1 Domain Analysis

In this first phase, emphasis is placed on
understanding the problem domain and specifying
“what” the components must do to solve the
problem. All the possible information, including any
kind of textual specifications, such as informal
requirements descriptions and interviews
transcriptions, is identified and organized to become
more reusable in new developments (Prieto-Diaz,
1990), creating a well defined reuse infra-structure
that allows the specification and the implementation
of applications inside a defined scope (Arango,
1988). As shown the Figure 1, some techniques and
models are used in this step in order to modeling, in
a high abstraction level, the domain problem.

2.1.2 Domain Design

In this second phase, the software engineer refines
the specifications from the previous steps, aiming to
obtain the components specifications, but without
worrying with the implementation details. As shown
the Figure 1, some techniques and models are used
to improve the problem understanding, looking for a
solution for the problem.

Until this moment, the components with their
interfaces were specified and the components
contain only specifications about the functional
requirements. Next, the NFRs must be specified. To
facilitate this task, an Aspect-Oriented NFRs
Framework was constructed. Next, this framework is
presented.

2.1.2.1 Aspect-Oriented Non-Functional
Requirements Framework

Given the problems related to NFRs, described in
Section 1, an Aspect-Oriented NFRs Framework
was constructed for dealing with NFRs in the
software development process, reducing time and
costs, and helping to achieve the main quality Figure 1: Domain Engineering Activity

ASPECT IPM: TOWARDS AN INCREMENTAL PROCESS MODEL BASED ON AOP FOR COMPONENT-BASED
SYSTEMS

227

attributes wanted by the customer, such as reliability
and performance.

Another motivation is the need to avoid the code
interlacement between functional and non-functional
requirements. To accomplish that, the Separation Of
Concerns (SOC) (Kiczales, et. al., 1997) principles
was applied, through AOP, in the framework
development.

The constructed framework deals with six NFRs:
exception handling, distribution, persistence, fault
tolerance, caching and security. Although there are
others important requirements that are not
considered in this work, such as concurrence control
and load balance, these six are quite common in
most of the software systems, being therefore
essential to a NFRs framework.

This framework is still under construction, and
some packages are not fully implemented. More
information can be found in (Alvaro, et. al., 2003).

To integrate the NFRs, the packages of the
framework are added in an incremental way. First
the functional requirements are designed. Once the
component is functionally complete, if there are any
NFRs to be added, each one is designed and added
to the component, generating new component
versions until it is complete, as shows Figure 2.

Once all the components are designed, with the
functional and NFRs defined, it is necessary to
describe them, in order to provide a good basis for
their reuse. The objective is to provide to the
software engineer enough information so that the
components are correctly reused. This includes some
information, such as the name of the responsible
engineers and developers, the key words to aid in
component search, information related to the
modifications occurred in the component, the NFRs
integrated with the component, etc. All these
information is stored together with the component in
the repository. After all components are described
and implemented, the domain may be then
implemented in an executable language.

2.1.3 Domain Implementation

In this phase, the software engineer defines the
programming language to perform the components
codification, and the distribution technology – if
required. The code related to the functional and non-
functional requirements is separately constructed.
Since Aspect IPM is based on AOP, it is easy to
integrate these different-purpose codes.

Figure 3 shows an example of a component that
implements distribution and exception handling
NFRs, to deal with operations related to a generic
customer. To implement the aspects, an aspect-
oriented language, such as AspectJ (Eclipse Project,
2003), was used. According to Figure 3, the
Customer component involves aspects that isolate
the distribution technology and the exception
treatment. Before, an important point to consider is
the AOP notation presents in the Figure 3 (and in
Figure 7). As not exists a well-define notation to
adopt in literature (Clarke, et. al., 2002), we will
represent aspects through UML stereotypes.
However, our research group is defining an AOP
notation for UML that will be aids the software
engineer in this kind of representation.

Using AOP it is possible to modularize the NFRs,
keeping their code separated from the functional
code. It is also possible to introduce changes without
modifying the source code. For example, to change
from CORBA to RMI, it is only necessary to
develop a new aspect and integrate it with the
functional code. This integration is automatically
performed, through the process called weaving
(Kiczales, et. al., 1997), shown in Figure 4.

Figure 2: Adding NFRs.
Figure 3: Customer Component

The weaver is a compiler that, given the
functional code (SourceCustomer) and a group of
aspects (Distribution and Exception Handling
aspects), a version of the component with these
aspects is generated.

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

228

2.1.4 Domain Tests and Deployment

Testing is an important concern to assure software
quality. However, in this case, we will take in
consideration the fact that aspects affect the
component behavior. In order to determine whether
an aspect is hostile or not, there needs to be some
concept of what constitutes correct behavior for a
component. Any aspect that interferes with the
correctness of an underlying component can then be
deemed hostile.

To ensure correct behavior, a component needs to
be checked conforms its pre- and post-conditions to
establish the range of acceptable behavior. When an
aspect intercept the component execution flow, the
component needs to test its pre- and post-conditions
before the message returns, looking for to ensure
that the component behavior still holds.

In order to reach this objective, the component
tests are performed at two levels: individual
components with their aspects and consistency
within a domain.

i. Within a domain, each component with their
aspects is individually tested by building tests
application around the component that allows the
component’s and aspect’s functionalities to be
exercised. Thus, whatever time that the aspect
intercept or returns the execution flow to a
component is verified the pre- and post-conditions in
order to analyze if the component behavior was kept.

ii. Then, tests to verify the internal consistency
between components of a domain are accomplished.

After the domain tests, the last step is to release
the component to the repository. This task has to
assure that the component is packaged in a form to
be used on applications development in the future,
together with all the information needed for reuse.

In this moment, the components are ready to be
deployed in an execution environment. In the second
activity of the Aspect IPM, the software engineer

may develop applications, reusing the components
that were built in this first activity.

2.2 Component-Based Development
(CBD)

This second activity guides the software engineering
during the construction of an application that reuses
the components developed in the first activity.
Figure 5 presents the phases for CBD activity. It
starts with the application requirements and
proceeds with the normal life cycle development.
The application is constructed in an incremental
way, with the functionalities being added during the
iterations of the process. To implement these
functionalities, the software engineer consults the
repository, which contains the constructed
components of the problem domain. Next, each
phase is briefly discussed.

Figure 4: Weaving process

Figure 5: Application Development.

2.2.1 Specify Application

In this first phase, specifications are created in order
to understand the problem and “what” should be
made to solve the problem. Use case models,
sequence diagrams and informal textual descriptions
are created to understand the application
requirements.

To aid in this task, the domain models that were
built in the first activity of Aspect IPM can be
reused. Mind maps, features model, storyboards,
collaboration models and use case models contain
much of the knowledge related to the domain, and
constitute an important information basis for the
software engineer. These models may be reused and
modified to help in specifying the application.

Once the application is specified, the software
engineer moves to the next step, where the design is
performed.

ASPECT IPM: TOWARDS AN INCREMENTAL PROCESS MODEL BASED ON AOP FOR COMPONENT-BASED
SYSTEMS

229

2.2.2 Design Application

In this second phase, emphasis is put on “how” to
solve the problem that was defined in the previous
phase. Here, the components of the domain can be
reused to perform the design. Figure 6 shows how
the components are integrated into the design.

In the first step (1), the software engineer
searches for available components that are likely to
be used in the application being designed. Several
techniques can be used to aid in the search for
components, ranging from mechanisms based on key
words or introspection, to more complex
mechanisms based on ontologies (Braga, 2000) and
software agents (Ye, et. al., 2002).

In the second step (2), the software engineer
verifies the applicability of the components, since
not all the components recovered in the first step can
be applied to the situation. Consequently, they have
to be analyzed to allow an effective reutilization. If
the component is directly applicable, it goes to the
last step (4), without any adaptation.

Normally the components stored in the repository
require some adaptations or customizations (3). In
this step, the software engineer identifies and
performs the necessary changes in the components.

The last step (4) consists in the components
composition. After the first three steps are
accomplished, the software engineer defines the
dependencies and establishes the inter-relationship
between the components. If needed, the software
engineer may return to the first step to identify more
components to compose the application.

After the existing components are identified and
composed, the software engineer completes the
design with new application-specific components.
As happens in the first activity of Aspect IPM, the
NFR Framework may be used to design the NFRs.

The components model of Figure 7 shows the
architecture of an application to maintain a record of
customers. The reused elements are shaded, and new
elements are represented in white. The Customer
component (in the left), which already implements

the distribution NFR, was completed with database
persistence, using the Persistence package of the
NFRs framework (in the right). The
PersistObjAspectCustomer aspect was created to
store the customer data. ServletAddCustomer,
ServletDeleteCustomer, and
ServletConsultCustomers are responsible for
obtaining data from the user, via Web, and passing
them to the Customer component.

Figure 6: Analyse the appropriated
components.

Figure 7: Design of Customer Application

2.2.3 Implement Application

At last, based on the design, the software engineer
creates the code of the application. In order to
accomplish this, the weaving process described in
section 2.1.4 is used. In this case, software engineer
builds the servlets and weaves them in the structure
shown in Figure 7. The servlet can not just
compiling (e.g. java compiler), in another words,
when using AOP, every new components built must
be integrated to the system using the weaving
process because if just compiled with another
compiler, all join points previously defined wouldn’t
be understandable by these new components. For
example, the ServletAddCustomer needs to initialize
the SourceCustomer component, though its
interface, and after its initialization, the distribution
aspect crosscuts the component to register its
interface in the naming service, as already explained
in section 2.1.3. Only then the ServletAddCustomer
could use the services available.

2.2.4 Application Test and Deployment

As happens in domain test, the application test is
performed in two levels: individual components
modified by the software engineer in the Design
Application phase and application development
reusing components and aspects.

i. If a component is modified, it is individually
tested by building a tests application around the
component that allows its functionality to be
exercised. Still, its necessary perform again the tests
to verify if the component behavior was kept (i.e.

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

230

check if the aspect does not affect the component
behavior). For this, the first test step of the Domain
Test phase is performed again.

ii. The last form of testing is at the level of the
application. The application is submitted to a long
series of tests before taken into production. Here, in
the case of the software engineer choose to use some
components and aspects of the NFRs framework is
necessary to do the test looking for maintain the
application behavior. However, in this case, the
software engineer chooses only reuse the persistence
framework and, thus, does not affect the behavior of
the application development.

Tests help to verify the quality of the new parts
inserted in the components, analysing if the
component behaviour was kept, and to assure that
the constructed application fulfils its requirements.

At the end, the application can be deployed.
According to the component model that was used,
this process may involve several issues, such as
distribution, database access, installation,
reconfiguration and adaptation of the components.
An intelligent deployment tool may be used to
manage, package, and deploy the component-based
application, obtaining better performance and result.

3 CONCLUSION AND FUTURE
WORKS

The main contribution of this work is to propose an
Incremental Process Model based on AOP for
Component-Based Systems, providing a high
reutilization degree, guiding the software engineer
during the development and reuse of software
components.

Our studies have shown that it is possible to
incrementally add these common NFRs into
components and applications, through a framework.
However, for other kinds of NFRs, such as
performance issues and concurrency control, this
may not be true. In future works, we intend to treat
the NFRs from the beginning of the requirements
elicitation. We believe that the features model may
be a good choice. This may help to determine
whether or not it is possible to adopt an incremental
approach for adding any kind of NFRs.

Finally, tools to facilitate the usage of Aspect
IPM are currently being developed. This includes
tools to facilitate the search and recovery of software
artifacts, aiming to minimize the effort of locating
reusable assets (Lucrédio, 2004).

REFERENCES

C.W. Krueger, 1992. Software Reuse, In ACM Computing
Surveys, v. 24, no. 02, June, pp. 131-183.

I. Jacobson; M. Griss; P. Jonsson, 1997. Software Reuse:
Architecture, Process and Organization for Business
Success. Addison-Wesley-Longman.

G.T. Heineman; W.T. Councill, 2001. Component-Based
Software Engineering, Putting the Pieces Together.
Addison-Wesley. USA.

C. Szyperski, 2002. Component Software: Beyond Object-
Oriented Programming. Addison-Wesley. USA.

N.C. Rosa, 2001. Nfi: An Architecture-Based Approach
for Treating Non-Functional Properties of Dynamic
Distributed Systems. PhD Thesis, Federal University
of Pernambuco (UFPE), Brazil.

G. Kiczales; J. Lamping; A. Mendhekar; C. Maeda; C.V.
Lopes; J.M. Loingtier; J. Irwin, 1997. Aspect-
Oriented Programming (AOP). In 11th European
Conference on Object-Oriented Programming
(ECOOP) - LNCS, Springer-Verlag, Finland.

J. Mylopoulos; L. Chung; B. Nixon, 1992. Representing
and Using Non-Functional Requirements: A Process
Oriented Approach. In IEEE Transaction on Software
Engineering, v. 18, no. 6, June, pp. 483-497.

A. Alvaro; D. Lucrédio; A.F. Prado; E.S. Almeida, 2004.
Towards an Incremental Process Model based on AOP
for Distributed Component-Based Software
Development. In: International Symposium on
Distributed Objects and Applications (DOA), Poster
Session, Cyprus. Lecture Notes in Computer Science
(LNCS), Springer-Verlag.

M. Griss; J. Favaro; M. D’Alessandro, 1998. Integrating
Feature Modeling with RSEB. In 5th International
Conference on Software Reuse (ICSR), IEEE Press.,
Canada, June.

M. Griss, 1997. Domain Engineering and Variability in
the Reuse-Driven Software Engineering Business.
Fusion Newsletter, February.

R. Prieto-Diaz, 1990. Domain Analysis: An Introduction.
In ACM SIGSOFT Software Engineering Notes. v. 15,
no. 2, April, pp. 47-54.

G. Arango, 1988. Domain Engineering for Software
Reuse. Ph.D. Thesis, Department of Information and
Computer Science, University of California, Irvine.

A. Alvaro; D. Lucrédio; E.S. Almeida; A.F. Prado; L.C.
Trevelin, 2003. A Framework of Components to Non-
Functional Aspects. (in portuguese). In Third
Component-Based Development Workshop, São
Carlos, Brazil.

S. Clarke; R. Walker, 2002. Towards a Standard Design
Language for AOSD. In Proceedings of the 1st
International Conference on Aspect-Oriented
Software Development (AOSD), ACM Press, NY.

Eclipse Projects, 2003. AspectJ – Aspect-Oriented
Programing (AOP). Available in
http://eclipse.org/aspectj Consulted in November.

ASPECT IPM: TOWARDS AN INCREMENTAL PROCESS MODEL BASED ON AOP FOR COMPONENT-BASED
SYSTEMS

231

http://www.amazon.com/exec/obidos/ASIN/0201924765/resourcesforsoft
http://www.amazon.com/exec/obidos/ASIN/0201924765/resourcesforsoft
http://www.amazon.com/exec/obidos/ASIN/0201924765/resourcesforsoft

R. Braga, 2000. Search and Recover of Components in
Software Reuse Environments.(in portuguese) PhD.
Thesis, Federal University of Rio de Janeiro, Brazil.

Y. Ye; G. Fischer, 2002. Supporting Reuse by Delivering
Task-Relevant and Personalized Information. In 24th
International Conference on Software Engineering
(ICSE), USA.

D. Lucrédio, 2004. Extension of MVCASE tool with
Remote Services for Storage and Recovery of Software
Artifacts (in portuguese), On going MSc. Dissertation,
Federal University of São Carlos, Brazil.

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

232

