- Efficiency and Interactive Mining Knowledge:
The prototype has been designed to be interactive
with the user and to give the answer in real time in
order to obtain the wanted population's partition.
- Accuracy: The use of the classic method of
Benzécri to obtain the hierarchy of parts has
guaranteed the goodness of such a partition. In
addition, the procedure to obtain a good partition
based on fuzzy sets has given excellent results
during the tests.
- Friendly Interface: The interface of DAPHNE is
graphic and completely user guided. Like-wise, the
prototype includes a meta-database, in such a way
that the management of a clustering project can
become quick and easy for the user.
Regarding future works:
- we will show a theoretical study of the
properties of the new similarity functions
incorporated in this work (combining fuzzy set
theory, classical distance functions, etc.) and
how imply the clustering process;
- we will specify an extension of dmFSQL
language that includes clustering clausules;
- we will integrate DAPHNE functionalities into
dmFSQL Server.
REFERENCES
J.P. Benzécri et coll, 1976. L'analyse des données; Tomo
I: La Taxinomie; Tomo II: L'analyse des
correspondences. Paris, Dunod.
R.A. Carrasco, J. Galindo, M.A. Vila, J.M. Medina, 1999.
Clustering and Fuzzy Classification in a Financial
Data Mining Environment. 3rd International ICSC
Symposium on Soft Computing, SOCO'99, pp. 713-
720, Genova (Italy), June 1999.
R.A. Carrasco, J. Galindo, A. Vila, 2001. Using Artificial
Neural Network to Define Fuzzy Comparators in
FSQL with the Criterion of some Decision-Maker. In
Bio-inspired applications of connectionism.-2001, eds.
J. Mira and A. Prieto, Lecture Notes in Computer
Science (LNCS) 2085, pp. 587-594. Ed. Springer-
Verlag, 2001, ISBN: 3-540-42237-4.
R.A. Carrasco, M.A. Vila, J. Galindo, 2002. FSQL: a
Flexible Query Language for Data Mining. In
Enterprise Information Systems IV, eds. M. Piattini, J.
Filipe and J. Braz, pp. 68-74. Ed. Kluwer Academic
Publishers, 2002, ISBN: 1-4020-1086-9.
M. Chen, J. Han, P.S. Yu, 1996. Data Mining: An
overview from a Data Base Perspective. IEEE
Transac. On Knowledge and Data Engineering, Vol 8-
6 pp. 866-883.
M. Delgado, A.F. Gómez-Skarmeta, A. Vila, 1996. On the
Use of Hierarchical Clustering. In Fuzzy Modelling.
International Journal of Approximate Reasoning, 14,
pp. 237-257.
W.J. Frawley, G. Piatetsky-Shapiro, C.J. Matheus, 1991.
Knowledge Discovery in Databases: An Overview. In
G. Piatetsky-Shapiro, W.J. Frawley eds. Knowledge
Discovery in Databases pp. 1-31, The AAAI Press.
J. Galindo, J.M. Medina, O. Pons, J.C. Cubero, 1998. A
Server for Fuzzy SQL Queries. In Flexible Query
Answering Systems, eds. T. Andreasen, H.
Christiansen and H.L. Larsen, Lecture Notes in
Artificial Intelligence (LNAI) 1495, pp. 164-174. Ed.
Springer.
J. Galindo, J.M. Medina, A. Vila, O. Pons, 1998. Fuzzy
Comparators for Flexible Queries to Databases.
Iberoamerican Conference on Artificial Intelligence,
IBERAMIA'98, pp. 29-41, Lisbon (Portugal), October
1998.
J. Galindo, J.M. Medina, J.C. Cubero, O. Pons, 1999.
Management of an Estate Agency Allowing Fuzzy
Data and Flexible Queries. EUSFLAT-ESTYLF Joint
Conference, pp. 485-488, Palma de Mallorca (Spain),
September 1999.
M.J. Martín-Bautista, M.A. Vila, 1998. Applying Genetic
Algorithms to the Feature Selection Problem in
Information Retrieval. In Flexible Query Answering
Systems, eds. T. Andreasen, H. Christiansen and H.L.
Larsen, Lecture Notes in Artificial Intelligence
(LNAI) 1495, pp. 272-281. Ed. Springer.
M.J. Quinn, 2003. Parallel Programming in C with MPI
and OpenMP. McGraw-Hill.
F.E. Petry, 1996. Fuzzy Databases: Principles and
Application (with chapter contribution by Patrick
Bosc). International Series in Intelligent Technologies.
Ed. H.-J. Zimmermann. Kluwer Academic Publishers
(KAP).
M.A. Vila, 1979. Nota sobre el cálculo de particiones
óptimas obtenidas a partir de una clasificación con
jerárquica. Actas de la XI Reunión Nacional de I.O.,
Sevilla, España.
USING dmFSQL FOR FINANCIAL CLUSTERING
141