detection process interact directly with the access control system, and change the user
authority dynamically as a result of the detected intrusion.
References
1. Adam, 1989. M. R. Adam. Security-Control Methods for Statistical Database: A
Comparative Study. ACM Computing Surveys, 21(4), 1989.
2. Atluri, 1999. V. Atluri, S. Jajodia, and B. George. Multilevel Secure Transaction
Processing. Kluwer Academic Publishers, 1999.
3. Garvey, 1991) T.D. Garvey and T.F. Lunt. Model-based intrusion detection. In
Proceedings of the 14th National Computer Security Conference, Balti-more, MD, October
1991.
4. Griffiths, 1976. P. P. Griffiths and B. W. Wade. An Authorization Mechanism for a
Relational Database System. ACM Transactions on Database Systems, 1(3):242–255,
September 1976.
5. Helman, 1993. P. Helman and G. Liepins. Statistical foundations of audit trail analysis for
the detection of computer misuse. IEEE Transactions on Software Engineering, 19(9):886–
901, 1993.
6. Ilgun, 1993. K. Ilgun. Ustat: A real-time intrusion detection system for unix. In Proceedings
of the IEEE Symposium on Security and Privacy,Oak-land, CA, May 1993.
7. Ilgun, 1995. K. Ilgun, R.A. Kemmerer, and P.A. Porras. State transition analysis: A rule-
based intrusion detection approach. IEEE Transactions on Software Engineering,
21(3):181–199, 1995.
8. Jagannathan, 1993. R. Jagannathan and T. Lunt. System design document: Next
generation intrusion detection expert system (nides). Technical report, SRI International,
Menlo Park, California, 1993.
9. Javitz, 1991. H. S. Javitz and A. Valdes. The sri ides statistical anomaly detector. In
Proceedings IEEE Computer Society Symposium on Security and Privacy, Oakland, CA,
May 1991.
10. Javitz, 1994. H. S. Javitz and A. Valdes. The nides statistical component description and
justification. Technical Report A010, SRI International, March 1994.
11. Lane, 1998. T. Lane and C.E. Brodley. Temporal sequence learning and data reduction for
anomaly detection. In Proc. 5th ACM Conference on Computer and Communications
Security, San Francisco, CA, Nov 1998.
12. Lee, 1999. Wenke Lee, Sal Stolfo, and Kui Mok. A data mining framework for building
intrusion detection models. In Proc. 1999 IEEE Symposium on Security and Privacy,
Oakland, CA, May 1999.
13. Lunt, 1992. T. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, C. Jalali, H. S. Javitz, A.
Valdes, P. G. Neumann, and T. D. Garvey. A real time intrusion detection expert system
(ides). Technical report, SRI International, Menlo Park, California, 1992.
14. Lunt, 1998. Teresa Lunt and Catherine McCollum. Intrusion detection and response
research at DARPA. Technical report, The MITRE Corporation, McLean, VA, 1998.
15. Lunt, 1993. T.F. Lunt. A Survey of Intrusion Detection Techniques. Computers & Security,
12(4):405–418, June 1993.
16. Mukherjee, 1994. B. Mukherjee, L. T. Heberlein, and K.N. Levitt. Network intrusion
detection. IEEE Network, pages 26–41, June 1994.
17. Porras, 1992. P.A. Porras and R.A. Kemmerer. Penetration state transition analysis: A
rule-based intrusion detection approach. In Proceedings of the 8th Annual Computer
Security Applications Conference, San Antonio, Texas, December 1992.
100