Another one will be to extend our approach
combining visualization methods and automatic
algorithms for mining very large datasets and
interpreting the results too.
REFERENCES
Ankerst, M., Elsen, C., Ester, M., and Kriegel, H-P., 1999,
“Visual Classification: An Interactive Approach to
Decision Tree Construction”, in proc. of Proceeding of
the 5
th
ACM SIGKDD Int. Conf. on KDD’99, San
Diego, USA, pp. 392-396.
Asimov, D., 1985, “The Grand Tour: A Tool for Viewing
Multidimensional Data”, in SIAM Journal on
Scientific and Statistical Computing, 6(1), pp. 128-
143.
Bennett, K., and Campbell, C., 2000, “Support Vector
Machines: Hype or Hallelujah?”, in SIGKDD
Explorations, Vol. 2, No. 2, pp. 1-13.
Bock, H-H., and Diday, E., 1999, “Analysis of Symbolic
Data”, Springer-Verlag.
Boser, B., Guyon, I., and Vapnik, V., 1992, “An Training
Algorithm for Optimal Margin Classifiers”, in Fifth
ACM Annual Workshop on Computational Learning
Theory, Pittsburgh, Pennsylvania, pp. 144-152.
Caragea, D., Cook, D., and Honavar, V., 2001, “Gaining
Insights into Support Vector Machine Pattern
Classifiers Using Projection-Based Tour Methods”, in
proc. the 7
th
ACM SIGKDD Int. Conf. on KDD’01,
San Francisco, USA, pp. 251-256.
Chang, C-C., and Lin, C-J., 2003, “A Library for Support
Vector Machines”, http://www.csie.ntu.edu.tw/~cjlin/-
libsvm
Delve, 1996, “Data for Evaluating Learning in Valid
Experiments”, http://www.cs.toronto.edu/~delve
Do, T-N., and Poulet, F., 2004a, “Towards High
Dimensional Data Mining with Boosting of PSVM
and Visualization Tools”, in proc. of ICEIS’04, 6
th
Int.
Conf. on Entreprise Information Systems, Vol. 2, pp.
36-41, Porto, Portugal.
Do, T-N., and Poulet, F., 2004b, “Enhancing SVM with
Visualization”, in Discovery Science 2004, E. Suzuki
et S. Arikawa Eds., Lecture Notes in Artificial
Intelligence 3245, Springer-Verlag, pp. 183-194.
Fung, G., and Mangasarian, O., 2002, “Incremental
Support Vector Machine Classification”, in proc. of
the 2
nd
SIAM Int. Conf. on Data Mining SDM'2002
Arlington, Virginia, USA.
Guyon, I., 1999, “Web Page on SVM Applications”,
http://www.clopinet.com/isabelle/Projects/SVM/app-
list.html
MacQueen, J., 1967, “Some Methods for classification
and Analysis of Multivariate Observations”, in proc.
of 5
th
Berkeley Symposium on Mathematical Statistics
and Probability, Berkeley, University of California
Press, Vol. 1, pp. 281-297.
Michie, D., Spiegelhalter, D-J., and Taylor, C-C., 1994,
“Machine Learning, Neural and Statistical
Classification”, Ellis Horwood.
Osuna, E., Freund, R., and Girosi, F., 1997, “An Improved
Training Algorithm for Support Vector Machines”, in
Neural Networks for Signal Processing VII, J.
Principe, L. Gile, N. Morgan, and E. Wilson Eds., pp.
276-285.
Platt, J., 1999, “Fast Training of Support Vector Machines
Using Sequential Minimal Optimization”, in Advances
in Kernel Methods -- Support Vector Learning, B.
Schoelkopf, C. Burges, and A. Smola Eds., pp. 185-
208.
Poulet, F., 2002, “Full-View: A Visual Data Mining
Environment”, Int. Journal of Image and Graphics,
2(1), pp. 127-143.
Poulet, F., 2004, “Towards Visual Data Mining”,in proc.
of ICEIS’04, 6
th
Int. Conf. on Entreprise Information
Systems, Vol. 2, pp. 349-356, Porto, Portugal.
Poulet, F., and Do, T-N., 2004, “Mining Very Large
Datasets with Support Vector Machine Algorithms”,
in Enterprise Information Systems V, O. Camp, J.
Filipe, S. Hammoudi et M. Piattini Eds., Kluwer
Academic Publishers, 2004, pp. 177-184.
Syed, N., Liu, H., and Sung, K., 1999, “Incremental
Learning with Support Vector Machines”, in proc. of
the 6
th
ACM SIGKDD Int. Conf. on KDD'99, San
Diego, USA.
Tong, S., and Koller, D., 2000, “Support Vector Machine
Active Learning with Applications to Text
Classification”, in proc. of ICML’00, the 17
th
Int.
Conf. on Machine Learning, Stanford, USA, pp. 999-
1006.
Vapnik, V., 1995, “The Nature of Statistical Learning
Theory”, Springer-Verlag, New York.
ICEIS 2005 - ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS
134