
A METHODOLOGY FOR ROLE-BASED MODELING OF OPEN 
MULTI-AGENT SOFTWARE SYSTEMS 

Haiping Xu and Xiaoqin Zhang 
Computer and Information Science Department 

University of Massachusetts Dartmouth 
North Dartmouth, MA 02747 

Keywords: Role-based modeling, Open multi-agent software systems, Object-Z formalism, A-R mapping. 

Abstract: Multi-agent systems (MAS) are rapidly emerging as a powerful paradigm for modeling and developing 
distributed information systems. In an open multi-agent system, agents can not only join or leave an agent 
society at will, but also take or release roles dynamically. Most of existing work on MAS uses role 
modeling for system analysis; however, role models are only used at conceptual level with no realizations in 
the implemented system. In this paper, we propose a methodology for role-based modeling of open multi-
agent software systems. We specify role organization and role space as containers of conceptual roles and 
role instances, respectively. Agents in an agent society can take or release roles from a role space 
dynamically. The relationships between agents are deduced through a mechanism called A-R mapping. As a 
potential solution for automated MAS development, we summarize the procedures to generate a role-based 
design of open multi-agent software systems. 

1 INTRODUCTION 

Multi-agent systems (MAS) are rapidly emerging as 
a powerful paradigm for modeling and developing 
distributed information systems. However, to specify 
and design multi-agent systems is not an easy task. 
Methodologies for developing multi-agent systems 
are therefore proposed to provide software engineers 
guidelines to develop MAS in a systematic manner. 
Among them, role-based analysis and design is one 
of the most effective methodologies for agent-based 
system analysis and design. Most of the existing 
work defines roles as conceptual units that only 
happen in the analysis phase. The roles abstracted 
from use cases are abstract constructs used to 
conceptualize and understand the system. They have 
no realizations in the implemented system after the 
analysis stage. In most of the cases, all roles are 
atomic constructs and cannot be defined in terms of 
other roles (Juan et al., 2002). This approach is 
feasible when designing small-scale, closed system, 
especially when an agent only takes a single role. 
However, in an open multi-agent system, agents can 
not only join or leave an agent society at will, but 
also take or release roles dynamically. When an 
agent takes more than one role, and further more, if 
an agent takes or releases roles at run time, this 

approach becomes inappropriate. This is because 
when role assignments are dynamic, the interaction 
relationships between agents become quite 
complicated, and usually they cannot be determined 
at design time. To develop an open and dynamic 
multi-agent system, it becomes vital for us to 
introduce the concept of role instance (a concrete 
implementation of a conceptual role) into the 
development process, and to design algorithms to 
deduce agent interaction relationships from role 
assignments and role relationships. In this paper, we 
propose a methodology for role-based modeling of 
open multi-agent systems. In our approach, we 
define a role organization that provides the ontology 
for modeling roles and their relationships. A role 
space is then defined as a container of role instances, 
as well as a middleware for agents to find the 
appropriate role instances from the role space. Based 
on the concepts of role organization and role space, 
we propose that agent society consists of a set of 
agents, which may take or release roles from a 
corresponding role space dynamically. The 
relationship between agents in an agent society can 
be deduced through a mechanism called A-R 
mapping. To support automated software 
development, we also propose a development 
process to design role-based open MAS. 

246
Xu H. and Zhang X. (2005).
A METHODOLOGY FOR ROLE-BASED MODELING OF OPEN MULTI-AGENT SOFTWARE SYSTEMS.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 246-253
DOI: 10.5220/0002553202460253
Copyright c© SciTePress



There are two main strands of work to which our 
research is related, i.e., work on formal modeling of 
agent systems, and work on role-based methodology 
for development of multi-agent systems. Previous 
work on formal modeling of agent systems has been 
based on formalisms, such as Z, temporal logic, and 
Petri nets, to specify agent systems or agent 
behaviors. Luck and d’Inverno tried to use the 
formal language Z to provide a framework for 
describing the agent architecture at different levels 
of abstraction (Luck and d’Inverno, 1995). They 
proposed a four-tiered hierarchy comprising entities, 
objects, agents and autonomous agents. Fisher’s 
work on Concurrent METATEM used temporal logic 
to represent dynamic agent behavior (Fisher, 1995). 
Xu and Shatz proposed the agent-oriented G-nets, 
which is a high-level formalism of Petri net, to 
model and verify multi-agent behaviors by using 
existing Petri net tools  (Xu and Shatz, 2003). More 
recently, a formalism called OZS, which is a 
combination of Object-Z and statecharts, is used to 
specify multi-agent systems (Hilaire et al., 2004). 
With this approach, Object-Z is used to specify the 
transformational aspects, and statecharts are used to 
specify the reactive aspects of an MAS. 

In summary, formal methods are typically used 
for specification of agent systems and agent 
behaviors. Existing work in this direction either does 
not directly use role modeling for agent design, or 
uses role modeling simply as conceptual guidelines 
for agent development during the analysis phase. In 
contrast, we propose our formal role-based open 
multi-agent system framework, where role classes 
can be explicitly instantiated, and role instances can 
be taken or released by agents at run time. 

A second strand of related work is to propose 
role-based methodologies for development of multi-
agent systems. Typical examples of such efforts 
include the Gaia methodology (Wooldridge et al., 
2000) and Multiagent Systems Engineering (MaSE) 
methodology (DeLoach et al., 2001). The Gaia 
methodology models both the macro (social) aspect 
and the micro (agent internals) aspect of the multi-
agent system. The methodology covers the analysis 
phase and the design phase. Specifically, in the 
analysis phase, the role model and interaction model 
are constructed. Based on the analysis models, in the 
design phase, three models, i.e., the agent model, 
service model and acquaintance model, are 
constructed during the initial design of the system, 
and then are refined during the detailed design phase 
using conventional object-oriented methodology. 
Similarly, the MaSE methodology is a specialization 
of more traditional software engineering 
methodologies. During the analysis phase of the 
MaSE methodology, a set of roles are produced, 
which describes entities that perform some function 

within the system. In MaSE, each role is responsible 
for achieving, or helping to achieve specific system 
goals and subgoals. During the design phase, agent 
classes are created from the roles defined in the 
analysis phase. In other words, roles are the 
foundation upon which agent classes are designed, 
and thus, the design of agent classes depends on role 
specifications. In our proposed approach, agent 
components and role components are loosely 
coupled, where agents take or release roles at run 
time without having the knowledge of the internal 
structure of role instances. Consequently, role 
classes and agent classes can be designed at the 
same time. Thus, the specification and design of 
agent classes can be significantly simplified. 

The rest of this paper is organized as follows: 
Section 2 presents a role-based MAS specification 
using Object-Z formalism. It describes a three 
layered system model for development of open 
MAS. The three layers are role organization, role 
space and agent society. Section 3 first presents the 
design of role organization in terms of role 
relationships, then it summarizes a development 
process for role-based open MAS, and discusses 
how agents from an agent society take or release 
roles in a corresponding role space, and how to build 
up agent interaction relationships using the A-R 
mapping mechanism. Finally, in Section 4, we 
provide conclusions and our future work. 

2 ROLE-BASED SPECIFICATION 

2.1 An Organizational Approach 

To facilitate the design of open MAS, we explicitly 
separate the concepts of role organization and role 
space that consist of conceptual roles and role 
instances, respectively. A role organization is 
defined at a conceptual level, in which roles have 
relationships such as inheritance, aggregation, 
association and incompatibility. On the other hand, a 
role space consists of role instances, which are 
concrete implementations of conceptual roles, and 
can be taken or released by agents at run time. A 
three-layered general model of role-based open 
multi-agent systems is illustrated as in Figure 1. 

As shown in Figure 1, the role organization 
defines a set of conceptual roles and their 
relationships. For example, role_B and role_C are 
defined as subclasses of role_A. Role_D is defined 
as a part of role_C, which implies that role_C views 
role_D’s responsibilities and capabilities as part of 
its own. Role_D and role_E have an association 
relationship, where role_D and role_E may be 
responsible for providing certain information to each 

A METHODOLOGY FOR ROLE-BASED MODELING OF OPEN MULTI-AGENT SOFTWARE SYSTEMS

247



 

other when there are such requests. In addition, 
role_D has a reflective association relationship to 
itself, for example, when role_D represents a type 
for team members, team members are required to 
discuss on certain topics. 
 

 
 

Figure 1: A general model of role-based open MAS 
 
At the second layer, we define a role space that 

consists of role instances. Each role instance must be 
of a role type defined in its corresponding role 
organization. For example, roleInstance_2 is of type 
role_D. The relationships between role instances can 
be easily derived from their class relationships. 
Therefore, it is not necessary to explicitly show their 
relationships at this layer. 

At the third layer, we define an agent society that 
consists of agent instances. Agents are free to join or 
leave the agent society, and they can take one or 
more than one role instances from the role space. 
For example, agent_1 takes two role instances, i.e., 
roleInstance_1 and roleInstance_2, which are of 
type role_B and role_D, respectively. An agent can 
not only take roles at run time, but also release them 
if they are not needed any more. The relationships 
between agents are based on the relationships 
between roles that are taken. For example, agent_1 
and agent_3 have an interaction relationship because 
role_D has a reflective association relationship with 
itself; agent_2 and agent_3 have an interaction 
relationship because role_D and role_E have an 
association relationship. Notice that relationships of 
inheritance and aggregation between roles are not 
carried down to agent relationships. 

Since agents take roles dynamically, agents are 
not designed based on role modeling. In other 
words, the development of agents can be totally 
independent of the development of roles. Thus, as 
one of the major advantages of our approach, the 
components of agents and roles are loosely coupled, 
and practically, they can be developed independently 
by different groups of people, for example, two 
different companies. 

2.2 A Formal Model for Open MAS 

To specify our proposed role-based model of open 
multi-agent systems, we build a framework using 
Object-Z formalism (Duke et al., 1995), which is an 
extension to Z formal specification language for 
modular design of complex systems. The framework 
is composed of a set of classes that specify the basic 
concepts including Role, RoleOrgnaization, 
RoleSpace, Agent and AgentSociety. We now 
provide a few key definitions giving the formal 
structure of our role-based open MAS models. 

Definition: A role, or a conceptual role, is 
defined as a template of role instances that has 
attributes, goals, plans, actions, permissions and 
protocols. A role instance is a fully instantiated role. 

The class schema Role can be formally defined 
based on its state schemas and operation schemas as 
follows: 

 
Role

attributes : P Attribute
goals : P Goal
plans : P Plan
actions : P Action
permissions : P Permission
protocols : P Protocol
beTaken : B

INIT

permissions = ∅

protocols = ∅

beTaken = false

setPermission
∆permissions
perm? : Permission

permissions ′ = permissions ⊕ {perm?}

addProtocol
∆protocols
prot? : Protocol

procotols ′ = protocols ∪ {prot?}
 

 
The Role class consists of a state variable 

attributes that represents a set of role attributes, 
whose elements are of type Attribute. The attributes 
of a role describe the characteristic properties of a 
role, including role name and role identification. A 
Role is defined to have a set of goals and a set of 
plans, as well as a set of actions. The state variable 
goals describe a set of goals of type Goal, which 
consists of a goal set that specifies the goal domain 
and goal states of a role. The state variable plans 
represent a set of plans of type Plan. A plan 
describes how to achieve a goal or subgoal by 
executing several actions in a specified order. Each 

role_A 

role_C role_D 

role_E 

Role Organization 

           Role Space 

agent_1 
 

agent_2 

agent_3 
       Agent Society 

roleInstance_1 

roleInstance_2 

roleInstance_n 

role_B 

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

248



plan is associated with a goal or a subgoal; however, 
a goal or subgoal may associate with more than one 
plan, and the most suitable one will be selected to 
achieve that goal or subgoal by the agent who takes 
this role according to the run-time circumstance. To 
carry out a certain plan, a role has the capability of 
performing some actions. The state variable actions 
refer to a set of actions of type Action, which this 
role is capable to execute. A role has a set of 
permissions when realizing goals or subgoals. The 
state variable permissions, whose elements are of 
type Permission, describe the resources that are 
available to that role and the accessing rights of that 
role for information when achieving a goal or 
subgoal. For example, a role may have the right to 
read a particular piece of information, to modify it, 
or even to generate new information. The state 
variable protocols define a set of protocols of type 
Protocol, which describes the way how a role may 
interact with other roles. An example of such 
protocol is the contract net protocol (Smith, 1980). 
Finally, the Boolean state variable beTaken defines 
if a role instance has already been associated with an 
agent. A true value indicates that a role instance has 
already been taken by an agent, and thus, it is not 
available for other agents. 

The concept of role instance, i.e., an instantiated 
role, is similar to the concept of object, which is an 
instantiated entity of a class. Notice that, although a 
role instance has certain goals, plans and actions, it 
does not have the responsibility to choose the most 
appropriate plan and the corresponding actions to 
achieve a certain goal or subgoal. Instead, such 
activities are the responsibility of agents. 

To support role behavior changing at run time, 
permissions can be modified and new protocols can 
be added to a role at run time. This is achieved by 
providing the operations of setPermission and 
addProtocol in the Role class schema. 

Definition A role organization defines a set of 
conceptual roles and the relationships between these 
conceptual roles. 

Before we can define the class schema 
RoleOrganization, we must first define the types of 
RoleMetaClass and Relationship. A metaclass is a 
class whose instances are classes. Every class has a 
metaclass, of which it is the sole instance. The 
RoleMetaClass specifies the Role class in terms of 
its attributes and behaviors. Therefore, an instance of 
type RoleMetaClass is the Role class. The 
Relationship type is defined as [inheritance | 
aggregation | association | incompatibility]. 

As shown in the class schema RoleOrganization 
below, the state variable roles are defined as a set of 
elements of type RoleMetaClass or its derivatives, 
thus roles refers to a set of subclasses of the Role 
class and the Role class itself. Accordingly, the 

function relationship is defined as relationships 
between classes (roles) instead of objects (role 
instances). Such relationships include inheritance 
relationship, aggregation relationship, association 
relationship and incompatibility relationship. We 
will describe them in details in Section 3.1. The Role 
class is the root class of all its descendents, and it 
exists at the very beginning when creating the role 
organization. New role classes can be added into the 
role organization. When a new class role? is added, 
the inheritance relationship between role? and its 
superclass r must be added too. This is automatically 
achieved by updating the function relationship by 
adding a mapping of {(role?, r)  inheritance}.  
Relationships other than the inheritance relationship 
between role classes must be set up by applying the 
operation setRelationship. 

a

 
RoleOrganization

roles : P ↓ RoleMetaClass
relationship :

↓ RoleMetaClass × ↓ RoleMetaClass �→ Relationship

∀ r1, r2 ∈ roles, r1 �= r2 • (r1, r2) ∈ dom relationship

INIT

roles = {Role}

addRole
∆roles, relationship
role? : ↓ RoleMetaClass

role? �∈ roles ∧ roles ′ = roles ∪ {role?}
∃ r ∈ roles • relationship′ =

relationship ∪ {(role?, r) �→ inheritance}

setRelationship
∆relationship
r1?, r2? : ↓ Role
rela? : Relationship

r1?, r2? ∈ roles ∧ rela? �= inheritance ∧
relationship′ = relationships ⊕ {(r1?, r2?) �→ rela?}

 
 

Definition A role space is a container of a set of 
role instances that are of types defined in a role 
organization. Each role space corresponds to a 
single role organization; however, a role 
organization can be mapped to a set of similar role 
spaces. Role instances can be added into or deleted 
from a role space dynamically. A role space 
provides services to create or delete role instances as 
well as to find a certain role instance according to 
role attributes. 

A role space is defined upon a role organization. 
As shown in the class schema RoleSpace below, we 
define roleOrganization as a global instance of type 
RoleOrganization, in which the number of role 
classes must be more than one. If the 
roleOrganization is modified, the role space must be 
updated accordingly in order to be consistent with 

A METHODOLOGY FOR ROLE-BASED MODELING OF OPEN MULTI-AGENT SOFTWARE SYSTEMS

249



 

the conceptual roles and role relationships defined in 
the roleOrganization. For example, when a certain 
conceptual role cr is deleted from the 
roleOrganization (for simplicity, the operation 
schema deleteRole is not defined in the class schema 
RoleOrganization), any role instances of type cr 
must also be deleted. This is important because later 
on, we will see that an agent society is also defined 
based on the role types and class relationships from 
a role organization. Therefore, this ensures that the 
types of role instances in a role space are always 
consistent with that of role instances an agent may 
take. 

 
RoleSpace

roleOrganization : RoleOrganization

#roleOrganization.roles > 1

roleInstances : P ↓ Role

∀ ri ∈ roleInstances • ri .getClass ∈ roleOrganization.roles

INIT

roleInstances = ∅

createRoleInstance
∆roleInstances
ri? : ↓ Role

ri?.getClass ∈ roleOrganization.roles
ri? �∈ roleInstances ∧ roleInstances ′ = roleInstances ∪ {ri?}

deleteRoleInstance
∆roleInstances
ri? : ↓ Role

ri? ∈ roleInstances ∧ roleInstances ′ = roleInstances − {ri?}

findRoleInstance
ΞroleInstances
ra? : Role.Attribute
ri ! : ↓ Role

(NotFound ∧ ri ! = null) ∨
∃ ri ∈ roleInstances • ri .attributes = ra? ∧ ri ! = ri

 
 

The state variable roleInstances refers to a set of 
role instances of type Role or its derivatives, which 
must have already been defined in the 
roleOrganization. Initially, the role space contains 
zero role instances. Role instances can be added into 
or deleted from a role space dynamically. In 
addition, a role space also serves as a middleware 
for agents to find appropriate role instances 
according to role attributes to fulfill their 
motivations. 

Definition An agent or an agent class is defined 
as a template of agent instances that has attributes, 
motivations, sensor, reasoningMechanism, and a 
reference rolesTaken to a set of role instances. An 
agent instance is a fully instantiated agent. 

As shown in the following class scheme Agent, 
an agent has attributes such as agent name, agent 

owner and agent identification. An agent also has 
motivations of type Motivation. A motivation is 
defined as any desire or preference that can lead to 
the generation and adoption of goals and affect the 
outcome of the reasoning or behavioral task intended 
to satisfy those goals (Luck and d’Inverno, 1995). 
The sensor of an agent perceives related 
environment changes of type Environment and 
transforms them into a set of sensor data. The 
reasoningMechanism is defined as a composite 
function that takes a set of sensor data and a set of 
motivations as arguments and maps them to a set of 
goals and subgoals. Based on the goals and 
subgoals, the function further derives a set of needed 
roles. The agent then takes each needed role from a 
role space to fulfill its motivations. Notice that the 
function reasoningMechanism in reality is more 
complicated than what we have defined, e.g., it also 
provides the functionality to choose plans according 
to a set of sensor data and a set of goals and 
subgoals. A more sophisticated definition of the 
reasoningMechanism is beyond the scope of this 
paper. The state variable rolesTaken refers to a set of 
roles that are taken by the agent. The Agent class 
schema defines two key operations: takeRole and 
releaseRole. The takeRole operation takes an 
available role instance from a role space, and set it to 
be unavailable to other agents. On the other hand, 
the releaseRole operation releases a role instance 
and set it to be available to other agents. 

 
Agent

attributes : P Attribute
motivations : P Motivation
sensor : Environment �→ SensorData
reasoningMechanism :

P SensorData × P Motivation → P Goal → P ↓ Role
rolesTaken : P ↓ Role

INIT

rolesTaken = ∅

takeRole
∆rolesTaken
ri? : ↓ Role

ri?.beTaken = false ∧ ri?.beTaken ′ = true
ri? �∈ rolesTaken ∧ rolesTaken ′ = rolesTaken ∪ {ri?}

releaseRole
∆roleTaken
ri? : ↓ Role

ri?.beTaken = true ∧ ri?.beTaken ′ = false
ri? ∈ rolesTaken ∧ rolesTaken ′ = rolesTaken − {ri?}

 
 

Definition An agent society is defined upon a 
role organization and consists of a set of agent 
instances that are of type Agent. An agent society 

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

250



provides services to create or delete agent instances 
such that agent instances can be added into or 
deleted from an agent society dynamically. 

The structure of agent society is often 
determined by organizational design which is 
independent of the agents themselves (Dastani et al., 
2003). As shown in the AgentSociety class schema 
below, the AgentSociety class is defined upon a 
roleOrganization of type RoleOrganization. Since 
both role spaces and agent societies are built on role 
organizations, there is a one to one mapping between 
a role space and an agent society when they share 
the same role organization. This implies that role 
instances created in one role space can only be taken 
by agents that belong to its corresponding agent 
society; meanwhile, any agent belongs to an agent 
society must take at least one role from a 
corresponding role space; otherwise, it shall leave 
the agent society eventually. Note that this does not 
mean an agent can take roles only from one role 
space. In contrast, an agent may join more than one 
agent societies and take roles from different role 
spaces.  

 
AgentSociety

roleOrganization : RoleOrganization

#roleOrganization.roles > 1

agentInstances : P Agent
interaction : Agent × Agent �→ Message

∀ a ∈ agentInstances ,∃ r ∈ a.rolesTaken •
r .getClass ∈ roleOrganization.roles

∀ a1, a2 ∈ agentInstances , a1 �= a2,
∃ r1 ∈ a1.rolesTaken,∃ r2 ∈ a2.rolesTaken,
roleOrganization.relationship(r1.getClass, r2.getClass)

= association • (a1, a2) ∈ dom interaction

INIT

agentInstances = ∅

createAgentInstance
∆agentInstances
agent? : Agent

agent? �∈ agentInstances ∧
agentInstances ′ = agentInstances ∪ {agent?}

deleteAgentInstance
∆agentInstances
agent? : Agent

∀ r ∈ agent?.rolesTaken • agent?.releaseRole(r)
agent? ∈ agentInstances ∧

agentInstances ′ = agentInstances − {agent?}
 

 
An agent society contains a set of agent 

instances of type Agent, referred to by the state 
variable agentInstances. The variable interaction is 
defined as a function which, when applies to a 
source agent and a destination agent, may generate a 
message of type Message. An agent instance belongs 

to an agent society takes roles of type defined in its 
corresponding role organization, upon which the 
agent society is defined. When two agents have an 
association relationship between their role instances, 
they may have interactions by sending messages to 
each other. Similar to a role space, the agent society 
contains zero agent instances initially. Agent 
instances can be added into or deleted from an agent 
society dynamically. 

3 ROLE-BASED MAS DESIGN 

3.1 Class Relationships in a Role 
Organization 

The first step to design a multi-agent system is to 
design Role classes and their relationships. Role 
hierarchy defines the relationships among different 
roles in a role organization. In addition to the 
aggregation relationships and association 
relationships between classes, inheritance is a 
mechanism for incremental specification and design, 
whereby new classes may be derived from one or 
more existing classes. Inheritance therefore is 
particularly significant in the effective reuse of 
existing specifications (Stepney et al., 1992). 

As a simple example of the inheritance 
relationship, consider a role type called 
LeadingRole, which is responsible for hiring other 
roles in fulfilling its goal.  

 
LeadingRole
Role

hiringNumber : ↓ RoleMetaClass �→ N

INIT

Role.INIT

hiringNumber = {Self �→ 1}

updateHiringNumber
∆hiringNumber
rc? : ↓ RoleMetaClass; num? : N

hiringNumber ′ = hiringNumber ⊕ {rc? �→ num?}
 

 
As shown in the above class schema, the 

LeadingRole class is defined as a subclass of the 
Role class. Therefore, a leading role inherits all the 
data fields, e.g., attributes, goals and plans, as well 
as all operations defined in the Role class. In 
addition, a leading role records how many group 
members it needs. This functionality is defined by 
the operation updateHiringNumber, where 
hiringNumber is defined as a function to map a role 
type to the number of role instances needed. Note 

A METHODOLOGY FOR ROLE-BASED MODELING OF OPEN MULTI-AGENT SOFTWARE SYSTEMS

251



 

that in each role organization, there exists a major 
leading role, which is responsible for hiring other 
roles in that organization. 

One more role class relationship in a role 
organization is called an incompatibility relationship, 
which exists when two roles cannot be taken by an 
agent at the same time under certain conditions. An 
example of such relationship (denoted as a dotted 
arc with a small circle) between a BankerRole and a 
LoanBorrowerRole is illustrated in Figure 2. In this 
example, a banker belonging to a bank is disallowed 
to borrow loan from the same bank. 

 

 
 

Figure 2: Example of incompatibility relationship 

3.2 A Design Process for MAS 

The purpose of our proposed approach is to ease 
software engineer’s effort in developing open multi-
agent systems. As we mentioned before, when 
agents take more than one roles, agent relationships 
in an agent society become very complicated. To 
make the design of intelligent agents simple, we 
avoid explicitly defining relationships between agent 
instances in an agent society. Instead, we deduce the 
interaction relationships between agent instances in 
an agent society from role assignments and role 
relationships in its corresponding role organization. 

As a summary, we briefly describe the 5-step 
generic procedure to design open MAS as follows: 

 
1. Design the set of Role classes Ω and their 

relationship Π1: Ω X Ω → [IH | AG], where IH 
and AG represent the relationship types of 
inheritance and aggregation, respectively.  

2. Design the role organization Φ according to the 
class schema RoleOrganization, and define any 
association relationships and incompatibility 
relationships between classes, i.e., Π2: Ω X Ω → 
[AS | IC], where AS and IC represent the 
relationship types of association and 
incompatibility, respectively.    

3. Design the role space Γ according to the class 
schema RoleSpace. The role space Γ should 
support creating, advertising and searching for 
role instances. It may use existing middleware, 
e.g., Sun Jini, for its purpose. 

4. Refine the Agent class with a set of sensors and a 
set of appropriate reasoning mechanisms. This 
step may be overlapped with Step 1-3. 

5. Design agent society Θ according to the class 
schema AgentSociety. The agent society Θ 
contains a set of agent instances of type Agent, 

and it corresponds to the role organization Φ 
with the same design purpose for agent 
organization or society. 

 
Since we design multi-agent systems as open 

systems, agents may join or leave agent societies 
freely, and they can take roles at run time according 
to their motivations. Thus, the relationships between 
agents cannot be determined at design time; instead, 
they must be set up dynamically. In Section 3.3, we 
discuss how to deduce agent interaction 
relationships and check role incompatibility for 
agents. 

3.3 Open Role Space and Open Agent 
Society 

Multi-agent systems are one of the most promising 
approaches to creating open systems because of their 
capabilities to dynamically reorganize themselves as 
the system goals and constituent agents change 
(Dastani et al., 2003). In our approach, the openness 
of a multi-agent system refers to two things: open 
role space and open agent society. Open role space 
refers to a space where role instances can be added 
into or deleted from dynamically; while open agent 
society implies that agents can not only join or leave 
the system at will, but more importantly, they can 
take or release role instances in a role space 
dynamically. The procedure of taking or releasing 
role instances in a role space is a mapping process 
from agents in an agent society to role instances in a 
role space. We call this mapping process the A-R 
mapping. 

Definition A-R mapping is a process for agents 
from an agent society Θ to take or release role 
instances in a role space Γ. Both Θ and Γ are defined 
upon the same role organization Φ. Formally, the 
state of A-R mapping is defined by the following 
function: 

A-R mapping state =̂ f : Agent �→ P ↓ Role
 

where f is a partial function which maps each 
agent instance to a set of role instances. 

The process of A-R mapping is a dynamic 
process of role assignment, which involves the 
following steps: 

 
1. Initialization: The agent society Θ makes a 

request to the role space Γ to instantiate the major 
LeadingRole class defined in the role organization 
Φ, and create a role instance for it. 

2. Role assignment: for each agent α in the agent 
society Θ, do the following: 
a. When agent α receives any sensor data from its 

environment, it may decide to generate some 

     BankerRole 
[same bank] 

    LoanBorrowerRole 

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

252



new goals or subgoals based on the sensor data 
and agent α’s motivations. 

b. With its reasoning mechanisms, agent α further 
deduce a set Ω of needed roles of types defined 
in the role organization Φ. If none of the roles 
in set Ω is of type LeadingRole, go to step 2.d. 

c. If any role in role set Ω is a leading role of type 
LeadingRole, agent α takes the corresponding 
role instance from the role space Γ, if available, 
updates the hiring number of other roles as 
needed, and makes requests to the role space Γ 
to create role instances for those roles under 
hiring. 

d. Repeat the following for a period of time Τ: 
Search the role space Γ for any role instances 
that match roles in role set Ω. If there is a 
match, agent α takes that role instance. If all 
roles in role set Ω have been matched with 
some role instances in Γ, go to Step 3. 

e. If any role in the role set Ω cannot be matched 
with a role instance in the role space Γ, agent α 
may decide to release all role instances or keep 
its current occupations. 

3. Marking role incompatibility: for each agent α, 
mark its role incompatibility as the following:     
for any role instances r1, r2 ∈ α.rolesTaken, if 
Φ.relationship(r1.getClass, r2.getClass) == 
incompatibility, mark agent α as potential role 
incompatibility with a self-loop. 

4. Setting up interaction relationships: for each 
agent α, set up the interaction relationships 
between agent α and other agents from the same 
agent society Θ as the following : for any agent 
instance β ∈ Θ.agentInstances, where α ≠ β, if ∃ 
r1 ∈ α.rolesTaken, r2 ∈ β.rolesTaken such that 
Φ.relationship(r1.getClass, r2.getClass) == 
association, then (α, β) ∈ dom Θ.interaction. 

 
The condition for role incompatibility of an 

agent α is checked at run time. Whenever the 
condition is satisfied, agent α must communicate 
with other agents to resolve the conflicts. In case the 
condition cannot be turned into false, one of the role 
instances in conflict must be released by agent α.  

4 CONCLUSIONS AND FUTURE 
WORK 

This paper describes a role based methodology for 
development of open multi-agent systems. The 
proposed concept of role space separates the design 
of roles and agents, which simplifies agent 
development. Inheritance relationships between 
roles support reuse of role design. For our future 
work, we will refine the association relationship into 
more specific relationships, e.g., subordination 

relationship and collaboration relationship. Based 
on the refined relationships, more specific role 
organizations can be designed. Social norms or rules 
can be specified in a role organization, and then 
checked for consistency in its corresponding agent 
society. This verification process may be automated 
due to our formal approach and the A-R mapping 
mechanism. 

REFERENCES 

Dastani, M., Dignum, V., and Dignum, F. 2003. Role-
assignment in open agent societies. Proceedings of the 
2nd International Joint Conference on Autonomous 
Agents & Multiagent Systems, Australia, pp. 489-496. 

DeLoach, S. A., Wood, M. F., and Sparkman, C. H. 2001. 
Multiagent systems engineering. The International 
Journal of Software Engineering and Knowledge 
Engineering, vol. 11, no. 3, pp. 231-258. 

Duke, R., Rose, G., and Smith, G. 1995. Object-Z: a 
specification language advocated for the description of 
standards. Computer Standards and Interfaces, vol. 
17, North-Holland, pp. 511-533. 

Fisher, M. 1995. Representing and executing agent-based 
systems. Proceedings of the International Workshop 
on Agent Theories, Architectures, and Languages, M. 
Wooldridge and N. Jennings, eds., LNCS, vol. 890, 
Springer-Verlag, pp. 307-323. 

Hilaire, V., Simonin, O., Koukam, A., and Ferber, J. 2004. 
A formal approach to design and reuse of agent and 
multiagent models. Proceedings of the Fifth 
International Workshop on Agent-Oriented Software 
Engineering (AOSE-2004), New York.  

Juan, T., Pearce, A., and Sterling, L. 2002. ROADMAP: 
extending the Gaia methodology for complex open 
systems. Proceedings of the 1st International Joint 
Conference on Autonomous Agents and Multiagent 
Systems (AAMAS 2002), Bolognia, Italy, pp. 3-10. 

Luck, M. and d’Inverno, M. 1995. A formal framework 
for agency and autonomy. Proceedings of the First 
International Conference on Multi-Agent Systems 
(ICMAS-95), AAAI Press / MIT Press, pp. 254-260. 

Smith, R. G. 1980. The contract net protocol: high-level 
communication and control in a distributed problem 
solver. IEEE Transactions on Computer, vol. C-29, 
pp. 1104-1113. 

Stepney, S., Barden, R., and Cooper, D. (eds) 1992. Object 
orientation in Z. Workshops in Computing, pp. 59-77. 

Wooldridge, M., Jennings, N. R., and Kinny, D. 2000. The 
Gaia methodology for agent-oriented analysis and 
design. International Journal of Autonomous Agents 
and Multi-Agent Systems, vol. 3, no.3, pp. 285-312. 

Xu, H. and Shatz, S. M. 2003. A framework for model-
based design of agent-oriented software. IEEE 
Transactions on Software Engineering (IEEE TSE), 
vol. 29, no. 1, pp. 15-30. 

A METHODOLOGY FOR ROLE-BASED MODELING OF OPEN MULTI-AGENT SOFTWARE SYSTEMS

253


