6 Conclusion
With Hess’s ID-based signature scheme as the base, we have presented an ID-based
serial multisignature scheme using bilinear pairings. Our scheme requires a forced ver-
ification at every level, which avoids the overlooking of the signatures of all the pre-
decessors. Moreover, the verification cost does not increase exponentially like some of
the existing multisignature schemes. To the best of our knowledge there is no existing
secure serial ID-based multisignature scheme using pairings. We also proved that the
scheme is secure against existential forgery under adaptive chosen message attack in
the random oracle model.
References
1. Bellare, M., Rogaway, P.: Random Oracles are Practicle - a paradigm for designing efficient
protocols. In: First ACM Conference and Communications Security, ACM, 1993 62-73
2. Boldyreva, A.: Threshold Signatures, Multi Signatures and Blind Signatures Based on the
GDH group Signature Scheme. In: PKC 2003, Lecture Notes in Computer Science, Vol.
2567, Springer-Verlag, (2003) 31-46
3. Boneh, D., Franklin, M.: Identity Based Encryption from the Weil Pairing. SIAM Journal of
Computing, , 32(3), (2003) 586-615. Extended abstract In: Proceedings of CRYPTO 2001,
Lecture Notes in Computer Science, Vol. 2139, Springer-Verlag, (2001) 213-229.
4. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Asiacrypt
2001, Lecture Notes in Computer Science, Vol. 2248, Springer-Verlag, (2002) 514-532.
5. Boyd, C.: Digital Multisignatures. Cryptography and Coding, Oxford University Press,
(1989), 241-246.
6. Chen, X., Zhang, F., Kim, K.: ID-based Multi-Proxy Signature and Blind Multisignature
from Bilinear Pairings. In: Proceedings of KIISC’2003, Korea (2003) 11-19.
7. Harn, L.: Group-oriented (t, n) threshold digital signature scheme and multisignature. In:
IEE Proceedings - Computers and Digital Techniques, 141(5), (1994) 307-313.
8. Hess, F.: An Efficient Identity Based Signature Schemes Based on Pairings.In: SAC 2002,
Lecture Notes in Computer Science, Vol. 2595, Springer-Verlag, (2002) 310-324.
9. Horster, P., Michels, M., Petersen, H.: Meta-Multisignatures Schemes Based on the Discrete
Logarithm Problem. In: IFIP/Sec 1995, (1995) 128-142.
10. Itakura, K., Nakamura, K.: A Public Key Cryptosystem Suitable for Digital Multi Signatures.
In: NEC Research and Development,(1983) 71:1-8.
11. Lin, C. Y., Wu, T. C., Hwang, J.: ID-based Structured Multi Signature Schemes. In: Ad-
vances in Network and Distributed Systems Security, Kluwer Academic publishers (IFIP
Conference Proceedings 206), Boston (2001) 45-59.
12. Lin, C. Y., Wu, T. C., Zhang, F.: A Structured Multi Signature Scheme from the GDH group.
In: Cryptology ePrint Archive, Report 2003/090, available at http://eprint.iacr.org/2003/090.
13. Micali, S., Ohta, K., Reyzin, L.: Accountable Subgroup Multi Signatures. In: ACM Confer-
ence on Computer and Communications Security, ACM,(2001) 245-254.
14. Mitchell, C. J.: An attack an ID-based nulti signature sheme. In: Royal Holloway, Univer-
sity of London, Mathematics Department Technical Report RHUL-MA-2001-9 (December
2001).
15. Ohata, T., Okamoto, T.: A digital multisignature scheme based on the FiatShamir scheme. In:
Asiacrypt 91, Lecture Notes in Computer Science, Vol. 739, Springer-Verlag, (1991) 75-79.
46