Appearance-based Face Recognition using Aggregated 2D Gabor Features

King Hong Cheung, Jane You, Qin Li, Prabir Bhattacharya

2005

Abstract

Current holistic appearance based face recognition methods require a high dimensional feature space to attain fruitful performance. In this paper, we have proposed a relatively low feature dimensional, template-matching scheme to cope with the transformed appearance-based face recognition problem. We use aggregated Gabor filter responses to represent face images. We investigated the effect of “duplicate” images (images from different sessions) and the effect of facial expressions. Our results indicate that the proposed method is more robust in recognizing “duplicate” images with variations in facial expression than the Principal Component Analysis method.

References

  1. Beymer, D.: Vectorizing Face Images by Interleaving Shape and Texture Computations. AI Memo No. 1537, AI Lab., Massachusetts Inst. of Technology (1995)
  2. Bovik, A.C. Clark, M., Geisler, W.S.: Multi-channel texture analysis using localized spatial filters. IEEE Trans. Pattern Anal. Machine Intell., Vol. 12 No. 1 (1990) 55-73
  3. Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. Journal of the Optical Society of America A., Vol. 2 No. 7 (1985) 1160-1169
  4. Daugman, J.G.: Complete discrete 2-d Gabor transforms by neural networks for image analysis and compression IEEE Trans. Acoust., Speech, Signal Processing, Vol. 36 No. 7 (1988) 1169-1179
  5. Draper, B.A., Baek, K., Bartlett, M.S., Beveridge, J.R.: Recognizing faces with PCA and ICA. Computer Vision and Image Understanding, Vol. 91 No.1-2 (2003) 115-137
  6. Heisele, B., Ho, P., Wu, J., Poggio, T.: Face Recognition: component-based versus global approaches. Computer Vision and Image Understanding, Vol. 91 No. 1-2 (2003) 6-21
  7. Jain, A.K., Duin, R.P.W., Mao, J.: Statistical Pattern Recognition: A Review. IEEE Trans. Pattern Anal. Machine Intell., Vol. 22 No. 1 (2000) 4-37
  8. Jain, A.K., Ross, A., Prabhakar, S.: An Introduction to Biometric Recognition. IEEE Trans. Circuits Syst. Video Technol., Vol. 14 No. 1 (2004) 4-20
  9. Lee, T.S.: Image representation using 2D Gabor wavelet. IEEE Trans. Pattern Anal. Machine Intell., Vol. 18 No. 10 (1996) 959-971
  10. Liu, C., Wechsler, H.: Independent Component Analysis of Gabor Features for Face Recognition. IEEE Trans. Neural Networks, Vol. 14 No. 4 (2003) 919-928
  11. Martinez, A.M.: Recognizing Imprecisely Localized, Partially Occluded, and Expression Variant Faces from a Single Sample per Class. IEEE Trans. Pattern Anal. Machine Intell., Vol. 24 No. 6 (2001) 748-763
  12. Martinez, A.M., Benavente, R.: The AR face database. CVC Tech. Report #24, Purdue Univ., Dept. of Electrical Eng. (1998); please see also: http://rvl1.ecn.purdue.edu/aleix/aleix_face_DB.html
  13. Martinez, A.M. Kak, A.C.: PCA versus LDA. IEEE Trans. Pattern Anal. Machine Intell., Vol. 23 No. 2 (2001) 228-233
  14. Phillips, P.J., Moon, H., Rauss, P.J., Rizvi, S.: The FERET Evaluation Methodology for Face Recognition Algorithms. IEEE Trans. Pattern Anal. Machine Intell., Vol. 22 No. 10 (2000) 1090-1104
  15. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognitive Neuroscience, Vol. 3 No. 1 (1991) 71-86
  16. Wiskott, L., Fellous, J.M., Kruger, N., von der Malsburg, C.: Face Recognition by Elastic Bunch Graph Matching. IEEE Trans. Pattern Anal. Machine Intell., Vol. 19 No. 7 (1997) 775-779
  17. Wu, H., Yoshida, Y., Shioyama, T.: Optimal Gabor Filters for High Speed Face Identification. Proc. of 16th International Conference on Pattern Recognition, Quebec City, Vol. 1 (2002) 107-110
  18. Zhang, D., Peng, H., Zhou, J., Sankar, K.P.: A Novel Face Recognition System Using Hybrid Neural and Dual Eigenspaces Methods. IEEE Trans. Syst. Man, Cybern. A, Vol. 32 No. 6 (2002) 787-793
  19. Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face Recognition: A Literature Survey. ACM Computing Surveys, Vol. 35 No. 4 (2003) 339-458
Download


Paper Citation


in Harvard Style

Hong Cheung K., You J., Li Q. and Bhattacharya P. (2005). Appearance-based Face Recognition using Aggregated 2D Gabor Features . In Proceedings of the 5th International Workshop on Pattern Recognition in Information Systems - Volume 1: PRIS, (ICEIS 2005) ISBN 972-8865-28-7, pages 3-11. DOI: 10.5220/0002566700030011


in Bibtex Style

@conference{pris05,
author={King Hong Cheung and Jane You and Qin Li and Prabir Bhattacharya},
title={Appearance-based Face Recognition using Aggregated 2D Gabor Features},
booktitle={Proceedings of the 5th International Workshop on Pattern Recognition in Information Systems - Volume 1: PRIS, (ICEIS 2005)},
year={2005},
pages={3-11},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002566700030011},
isbn={972-8865-28-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Workshop on Pattern Recognition in Information Systems - Volume 1: PRIS, (ICEIS 2005)
TI - Appearance-based Face Recognition using Aggregated 2D Gabor Features
SN - 972-8865-28-7
AU - Hong Cheung K.
AU - You J.
AU - Li Q.
AU - Bhattacharya P.
PY - 2005
SP - 3
EP - 11
DO - 10.5220/0002566700030011