Deriving Test Cases from B Machines Using
Class Vectors

W. L. Yeund and K. R. P. H. Leungy
! Lingnan University, Hong Kong

2 Hong Kong Institute of Vocational Education, Hong Kong

Abstract. This paper proposes a specification-based testing method for use in
conjunction with the B method. The method aims to derive a set of legitimate
class vectors from a B machine specification and it takes into account the structure
and semantics of the latter. A procedure for test case generation is given. One
advantage of the method is its potential to be integrated with the B method via its
support tools.

1 Introduction

Formal methods play an important role in the verification and validation of enterprise
information systems. Formal methods emphasize the formulation of a precise formal
specification and the formal verification of a design against its specification. From the
point of view of software testing, a specification serves as a basis for functional (black-
box) testing on which test cases are systematically derived. Recently, there have been
much interests in methods and tools for generating test cases from formal specifications
(see, e.g. [2]). While some of these approaches aim to fully automate the testing process
(e.g. [5]), others attempt to bring the existing body of knowledge in software testing to
formal-specification-based testing (e.qg. [4]).

This paper discusses a method based on earlier work on software testing using class
vectors [6] for generating test cases from formal specifications written in the B Abstract
Machine Notation (AMN) [1]. The class vectors method was developed to overcome
some shortcomings of the Classification Tree method [3]. It defines classes and classifi-
cations in a formal setting and defines conditions formally for generating test cases. It is
also a general testing method applicable to software with only informal specifications.
The main contribution of this paper is to adopt and adapt the class vectors method for
the B AMN formal specification language, which is notational basis of the B method.
The B method is a major formal method for the development of information systems.

The rest of this paper is organized as follows. The next section first describes a B
AMN specification for a small information system example. Section 3 defines the prob-
lem of generating a set of legitimate test cases based on the concept of classes. Section
4 and 5 define two necessary conditions for partitioning and filtering class vectors. Sec-
tion 6 presents the test case generation procedure and illustrate it with the example.
Section 7 discusses some possible extensions of the method and Section 8 gives a con-
clusion.

L. Yeung W. and R. P. H. Leung K. (2005).

Deriving Test Cases from B Machines Using Class Vectors.

In Proceedings of the 3rd International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages 71-76
DOI: 10.5220/0002571500710076

Copyright © SciTePress

72

MACHINE CreditCard(itype, iclass ischemg
SETSCARDCLASS= {platinum gold, classig;
CARDTYPE= {visa mastercard;
REWARDSCHEME- {airticket, gift};
AIRLINE = {cx, dg};
TICKETTYPE= {first, businesseconomy;
SUPPLIER= {reda, tdc};
PROPERTIES
itype € CARDTYPEA iclasse CARDCLASS\ ischemec REWARDSCHEME
VARIABLES type class schemgbalance
INVARIANT
typee CARDTYPEA classe CARDCLASS\ schemec REWARDSCHEME
(class= platinum=>- balancee 0..8000) A
(class= gold = balancec 0..4000) A
(class= classic=- balancec 0..1000)
INITIALISATION
type:= itype || class:= iclass|| scheme= ischemd| balance:= 0

OPERATIONS
updatebalanceb)
PRE (class= platinum=- b € 0..8000) A (class= gold = b € 0..4000) A
(class= classic=- b € 0..1000)
THEN balance:= b END;
redeemair(al, tt,...) =
PRE scheme= airticket A al € AIRLINE A
(al = cx=tt € TICKETTYPE A (al = dg = tt € {first, busines}) ...
THEN ... END;
redeemgift(sy,...) =
PRE scheme= gift A sue SUPPLIERA ...

o~

THEN ... END;
END
Fig. 1. A formal specification of a credit card object in B AMN
2 An Example

We use a small information system example about credit catal processing adapted
from [6]. The ABC Bank issues both Visa and MasterCard crelidls in three different
classes, namely platinum, gold, and classic. Credit lifoitthese three different classes

are $8000, $4000, and $1000, respectively.

The ABC Bank operates two reward schemes for its credit castbmers. Every
credit card holder of ABC Bank can join only one of these twlesnes and earn reward
points for using the credit cards for purchases. For schepnewfard points earned can
only be used to redeem free air tickets from airlines CX or B&deemed air tickets
can be of first, business, or economy class with airline CHM,&tirst or business class
tickets with airline DG. For scheme B, reward points earreatllze used to redeem free

gifts from suppliers RedA or TDC.

73

Figure 1 shows a (partial) formal specification of a creditlaabject in the B Ab-
stract Machine Notation. For readers who are not familighw AMN, a B specifi-
cation is structured as a number of B machines (which roughityespond to objects),
each of which may have its own state and operations on ite.séaB machine may
include or reference other B machines to become a more ceammehine and that
is how complex specifications are structured. Each maclgeeification consists of a
number of optional clauses, each beginning with a keywohjital. In Figure 1, the
MACHINE clause gives the B machine a nan@réditCard and defines three parame-
ters of the machine. The SETS clause define some sets of wadadsn the machine.
The PROPERTIES clause define the types of the machine pawné&he state vari-
ables of the machine are defined in the VARIABLES clause andameprovide invari-
ant properties for these variables in the INVARIANT claushe INITIALISATION
clause defines operations for initializing the state vdeisbvhereas the OPERATIONS
clause lists the operations available for updating andingatthe state variables. An
operation may take input parameters and has a preconditiengded by the keyword
PRE) on which the operation is guaranteed to keep the mathaeonsistent state.

In order to generate (functional) test cases for@neditCardB machine, we need
to first identify the input variables and their legitimatdues. The three input variables
are on the first lineifype iclass ischemg are actually parameters of the B machine;
they provide initial values to the state variableégg class schemg Their legitimate
values are defined in tHRROPERTIES section. Other input variables come from the
parameters of the operations and their legitimate valueslefined by the precondi-
tions:

— variableb's legitimate values depend on the class of the credit card
— variableal must be eithecx or dg; variablett depends ol
— variablesumust be eitheredaor tdc

3 The Problem

Let X be an input variable and(X) be the set of values that can take, i.e. the type
of X . Assume that-(X) can be partitioned into a finite numbkrof disjoint sub-
sets,71(X),...,7%(X) and we call them the classes Xf Let clasx be a function
that takes an input value of and returns the class that it belongs, tlss(X) =
7K(X) if and only if X € 7¢(X).

Given a vector ofiinput values(Xy, .. ., Xn), denoted by, the following function
is defined:

classeéX) = (clas, (X1), ..., class, (Xn))

and we call this a class vector.

Given a B machine witlm input variables<y, . . ., X, and for each input variabDs;,
m different classes! (X)), ..., 7™ (X;), there arem; x ... x m, possible different class
vectors.

However, not all class vectors represent legitimate inplite predicates defined
in a B machine specification help us to constrain the set akolactors to only those

74

that provide legitimate inputs. For instance, a credit aabipbct initialized asclassic
cannot legitimately accepd00 as an input value of variableof the operatiorupdate-
balance—the precondition olupdatebalancerules out any classes of values except
0..1000 for b in the case otlassic

The problem is how to define such a set of legitimate clasovettased on the B
machine specification and then how to generate test casagmset.

4 Independent Input Variables

To define the set of legitimate class vectors for a B machieeifipation, we first divide
the set of input variables into independent sets of inputises.

Definition 1 (Independence) Two input variables Xand X% are independent to each
other if and only if the B specification admits any combimatis values of them as
input, i.e.

VX € 7(X1), % € 7(Xo) @ [T]I A /\ | A Pre)

where T is the initialisation clause of the B machine, | isithariant, and Preis the
precondition of the i operation.

Consider the input variablétype, iclass andb of the CreditCardmachineitypeis
clearly independent from the other two as it does not relathé other two variables
(or any other variables) in the Invariant or any Precondgiol he other two variables,
iclassandb, relate to each other in the first precondition (via the @tigation clause)
and are therefore not independent.

For the seven input variables of tleeditCard machine, we identify the following
independent sets of input variables:

{itype}, {iclass b}, {ischemeal, tt, su}

5 Coexisting Classes

After identifying the independent sets of input variables, identify those classes of
values that can coexist in a legitimate input class vector.

Definition 2 (Coexitence) Given two input variables Xand X, and two respective
classes of their values (X;) and ! (Xz), these two classes are coexisting if and only if
the B specification admits any combination of values of threthé input, i.e.

VX €7(X1),% € T(Xe) @ [T]I A /\ | A Pre)

where T is the initialisation clause of the B machine, | isithariant, and Preis the
precondition of the i operation.

75

Consider the input variableat andtt. Variableat has the following classefcx}
and {dg}. We can divide the values df into the following classegfirst, busines$
and{economy and call themC1 andC2. Referring to the precondition of the second
operation of theCreditCardmachine, it is clear that clagex} is coexisting with both
C1 andC2 whereas clas$dg} is only coexisting withC1.

6 Test Case Generation

Based on the concepts described in the above sections,ribeagjen of test cases from
a B specification based on class vectors encompasses iheifglsteps:

1. Identification of classes

2. Identification of independent sets of input variables

3. For each independent set of input variables, enumedatasas vectors containing
only coexisting classes

4. Derive the Cartesian product of the independent setsefisting class vectors

5. For each class vector of the Cartesian product, select@rvef representative
values as a single test case

For the Credit Card example, we have already identified tdepgendent sets of
input variables in section 4. The coexisting class vectorsifese sets are as follows:

{itype} : (visa), (mastercard
{iclass b} : (platinum 0..1000), (platinum 1001..4000),
(platinum 4001..8000), (gold, 0..1000),
(gold, 1001..4000), (class 0..1000)
{ischemeal, tt, su} : (airticket, cx, {first, business$), (airticket, cx, {economy),
(airticket, dg, {first, business), (gift, SUPPLIER

Taking the Cartesian product of the above sets yields6 x 4 = 48 different class
vectors, from which we can derive 48 legitimate test cases.

7 Discussion

The concept of a class (of input values) goes back to theifitadn tree method for
black box testing. In the test case generation method pies@mthis paper, we define
classes as disjoint sets of input values of single varigdntelsdo away with the concept
of classification as our starting point is already a formalcfication with well defined
input variables, rather than an informal specification. Assult, the concept of a class
vector is slightly simplified as compared to the one defind@jin

On the other hand, the derivation of legitimate class vecsti relies on the inde-
pendence and coexistence conditions which are now moreorigly defined in terms
of the B Abstract Machine Notation (AMN) semantics. Notettfoa the lack of space
and the sake of clarity the definitions cover only the invatrigart and operation pre-
conditions of the B specification and they can be extendedverother specification
clauses such as CONSTRAINTS and ASSERTIONS.

76

For similar reasons, the applicability of the proposed roéfior large specifications
involving tens or hundreds of B machines has not been iltestk in this paper. This
would actually be taken care of by the semantics of the modwlastructs of B AMN.
For instance, in a composite B machine withh including M, and Mg, the invariant
and operation preconditions &, has to take into account those i, and M3 for
any M; operations that affect the statesMf andMs. It suffice to say that for large
specifications with complex inter-relationships among ynBnmachines, the use of
support tools to help keep track of all the relationshipsiseatial. In fact, the test case
generation method presented in this paper should idealigtbgrated in support tools
such as the B-toolkit for the B method. The independence apsistence conditions
would be generated in a similar way as proof obligations tlaat be verified with the
help of proof assistance and proof checker.

8 Conclusion

We adopted and adapted a previous black-box testing metsmtiton class vectors for
use in the formal setting of the B AMN specification languafee formal definition of
class vectors and the conditions for deriving legitimas tases from B machines are
defined. We also outline the procedure for test case geoeratid illustrate it with an
example in this paper. The main advantage of this approablaist takes into account
the structure and semantics of the B AMN specification lagguand can be readily
integrated with the B method via its support tools. This soahe aim of our further
work.

References

1. J. R. Abrial. The B-Book Cambridge University Press, 1996.

M. C. Gaudel. Testing can be formal too. TAPSOFT'95pages 82-96. Springer, 1995.

3. M. Grochtmann and K. Grimm. Classification Trees for Partition TestBaftware Testing,
Verification and Reliability3:63—-82, 1993.

4. Robert M. Hierons, Mark Harman, and Harbhajan Singh. AutomtiG&nerating Informa-
tion from a Z Specification to Support the Classification Tree MethodZBr2003 volume
2651, pages 388-407. Springer, 2003.

5. Bruno Legeard, Fabien Peureux, and Mark Utting. A CompariseheoBTT and TTF Test-
Generation Methods. 1AB 2002 volume 2272, pages 309-329. Springer, 2002.

6. Karl R. P. H. Leung and Wai Wong. Deriving Test Cases UsingCl&stors. InProc. 7th
Asia-Pacific Software Engineering Confereppages 146-153. IEEE, 2000.

N

