10. Liu, J. M. and Chua, T. S., Building semantic perception net for topic spotting, In ACL’01,
pp.370-377, 2001
11. Ruiz, M. E. and Srinivasan, P., Hierarchical neural networks for text categorization, In
ACM SIGIR’99, pp.81-82, 1999
12. Schutze, H., Hull, D. A. and Pedersen, J. O., A comparison of classifier and document
representations for the routing problem, In ACM SIGIR’95, pp.229-237, 1995
13. Cortes, C. and Vapnik, V., Support vector networks, In Machine Learning, Vol.20, pp.273-
297, 1995
14. Joachims, T., Learning to classify text using Support Vector Machines, Kluwer Academic
Publishers, 2002
15. Joachims, T., Text categorization with Support Vector Machines: learning with many
relevant features, In ECML’98, pp.137-142, 1998
16. Schapire, R. and Singer, Y., BoosTexter: A boosting-based system for text categorization,
In Machine Learning, Vol.39, No.2-3, pp.135-168, 2000
17. Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C.J., Classification and Regression
Trees, Wadsworth Int. 1984
18. Brodley, C. E. and Utgoff, P. E., Multivariate decision trees, In Machine Learning, Vol.19,
No.1, pp.45-77, 1995
19. Denoyer, L., Zaragoza, H. and Gallinari, P., HMM-based passage models for document
classification and ranking, In ECIR’01, 2001
20. Miller, D. R. H., Leek, T. and Schwartz, R. M., A Hidden Markov model information
retrieval system, In ACM SIGIR’99, pp.214-221, 1999
21. Kira, K. and Rendell, L. A practical approach to feature selection. In Proc. 9
th
International
workshop on machine learning (pp. 249-256) 1992
22. Gilad-Bachrach, Navot A., Tishby N. Margin Based Feature Selection - Theory
and Algorithms. In Proc of ICML 2004
23. Stanley F. Chen and Rosenfeld R. A Gaussian prior for smoothing maximum entropy mod-
els. Technical report CMU-CS-99108, Carnegie Mellon University, 1999
24. Ronald Rosenfeld. Adaptive statistical language modelling: A maximum entropy approach,
PhD thesis, Carnegie Mellon University, 1994
25. Ratnparkhi Adwait, J. Reynar, S. Roukos. A maximum entropy model for prepositional
phrase attachment. In proceedings of the ARPA Human Language Technology Workshop,
pages 250-255, 1994
26. Ratnparkhi Adwait. A maximum entropy model for part-of-speech tagging. In Proceedings
of the Empirical Methods in Natural Language Conference, 1996
27. Shannon C.E. 1948. A mathematical theory of communication. Bell System Technical
Journal 27:379 – 423, 623 – 656
28. Berger A, A Brief Maxent Tutorial. http://www-2.cs.cmu.edu/~aberger/maxent.html
29.Berger A. 1997. The improved iterative scaling algorithm: a gentle introduction
http://www-2.cs.cmu.edu/~aberger/maxent.html
30. Della Pietra S., Della Pietra V. and Lafferty J., Inducing features of random fields. IEEE
transaction on Pattern Analysis and Machine Intelligence, 19(4), 1997
31. Nigam K., J. Lafferty, A. McCallum. Using maximum entropy for text classification, 1999
32. Dumais, S. T., Platt, J., Heckerman, D., and Sahami, M, Inductive learning algorithms and
representations for text categorization. Submitted for publication, 1998
http://research.microsoft.com/~sdumais/cikm98.doc
33. Mikheev A., Feature Lattics and maximum entropy models. In machine Learning,
McGraw-Hill, New York, 1999
34. Yang, Y. and Pedersen J., A comparative study on feature selection in text categorization.
Fourteenth International Conference on Machine Learning (ICML’97) pp 412-420, 1997
35. Berger A., Della Pietra S., Della Pietra V., A maximum entropy approach to natural
language processing, Computational Linguistics, 22 (1), pp 39-71, 1996
67