References
1. Vigna, G., Kemmerer, R.: Netstat: a network based intrusion detection system. Journal of
Computer Security 7 (1999)
2. Andersson, D.: Detecting usual program behavior using the statistical component of the next-
generation intrusion detection expert system (nides). Technical report, Computer Science
Laboratory (1995)
3. Tyson, M.: Derbi: Diagnosys explanation and recovery from computer break-ins. Technical
report (2000)
4. Laing, B., Alderson, J.: How to guide - implementing a network based intrusion detection
system. Technical report, Internet Security Systems, Sovereign House, 57/59 Vaster Road,
Reading (2000)
5. Bace, R.G.: Intrusion Detection. Macmillan Technical Publishing (2000)
6. Baker, A.R., Caswell, B., Poor, M.: Snort 2.1 Intrusion Detection - Second Edition. Syngress
(2004)
7. Paxson, V., Terney, B.: Bro reference manual (2004)
8. Lee, W., Stolfo, S.J.: A framework for constructing features and models for intrusion detec-
tion systems. ACM Transactions on Information and System Security (TISSEC) 3 (2000)
227–261
9. Barbara, D., Couto, J., Jajodia, S., Popyack, L., Wu, N.: Adam: Detecting intrusion by data
mining, IEEE (2001) 11–16 Workshop on Information Assurance and Security.
10. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in
databases. AI Magazine (1996) 37–52
11. Stolfo, S.J., Fan, W., Lee, W., Prodromidis, A., Chan, P.: Cost-based modeling for fraud
and intrusion detection results from the jam project. In: Proceeding of the 2000 DARPA
Information Survivability Conferance and Exposition (DISCEX ’00). (2000)
12. McHugh, J.: Testing intrusion detection systems: A critique of the 1998 and 1999 darpa in-
trusion detection system evaluations as performed by lincoln laboratory. ACM Transactions
on Information and System Security 3 (2000) 262–294
13. Paxson, V., Floyd, S.: Difficulties in simulating the internet. IEEE/ACM Transactions on
Networking 9 (2001) 392–403
14. Mahoney, M.: A Machine Learning Approach to Detecting Attacks by Identifying Anom-
alies in Network Traffic. PhD thesis, Florida Istitute of Technology (2003)
15. Esposito, M., Mazzariello, C., Oliviero, F., Romano, S.P., Sansone, C.: Real Time Detection
of Novel Attacks by Means of Data Mining. In: Proceedings of 2005 ICEIS Conference,
ACM (2005)
16. Cohen, W., Singer, Y.: Simple, fast, and effective rule learner. In: Proceedings of the Six-
teenth National Conferance an Artificial Intelligence, AAAI Press / The MIT Press (1999)
335 – 342
17. Meir, R., Ratsch, G.: An introdution to boosting and leveraging. In Mendelson, S., Smola,
A., eds.: Advanced Lectures an Machine Learning, Springer Verlag (2003) 119 – 184
18. Axelsson, S. In: The base-rate fallacy and the difficulty of intrusion detection. Volume 3 of
ACM transaction on information and system security. ACM (2000) 186–205
153