
Teaching Software Testing in Introductory CS Courses
and Improving Software Quality

Syed M Rahman and Akram Salah

Department of Computer Science, North Dakota State University
258 IACC Building, Fargo, North Dakota 58105, USA

Abstract. Undergraduates in computer science typically begin their curriculum
with a programming course or sequence. Many researchers found that most of
the students who complete these courses, and even many who complete a
degree, are not proficient programmers and produce code of low quality. In this
paper, we have addressed this problem by proposing a cultural shift in
introductory programming courses. The primary feature of our approach is that
software testing is presented as an integral part of programming practice;
specifically, a student who is to write a program will begin by writing a test
suite. Our initial results show that this approach can be successful. Teaching
basic concepts how to test a program and writing test cases do not take much
time, it helps beginning students to understand the requirements, and it helps
them produce better-quality code.

1 Introduction

An industry survey [2] reported that more than 50% of a software project’s budget is
spent on activities related to improving software quality. Industry leaders claimed that
this is caused by the inadequate attention paid to software quality in the development
phase. Another multi-national, multi-institutional [1] assessment showed that
students who completed one or two computer-programming classes’ on average
scored only 22.89 out of 110 points on the general evaluation criteria. Universities in
USA, Canada, and elsewhere found that 50% of students failed, withdrew or earned
D-grades in introductory programming courses [3, 4]. These disappointing and
alarming research results concluded that many students do not know how to program
at the end of their introductory programming courses.

In this paper, we have addressed this problem and proposed two different models
for two introductory programming courses. Our initial finding shows that our
approach can be successful. We run the experiment in the Department of Computer
Science. In our first model, CS-I (Introduction to Java Programming) students write
test cases as a prerequisite of writing programs. Students learn how to write test cases
and how to test their own code. Students draw context diagrams, answer a few general
questions, write test suites before writing code, and submit all these to the instructor.
After writing code, students execute their test cases and submit test results and the test
program with the main program. In our second model, CS-II (Data Structure using
Java), students apply Test-driven Development (TDD) or test-first programming as a

M Rahman S. and Salah A. (2005).
Teaching Software Testing in Introductory CS Courses and Improving Software Quality.
In Proceedings of the 3rd International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages
126-128
DOI: 10.5220/0002577201260128
Copyright c© SciTePress

software development and testing methodology. In TDD, one always writes test cases
before adding new code. It promotes incremental development and gives students a
great degree of confidence in the correctness of their code, helps them understand the
requirements and design better, makes it easier to change requirements, and helps to
build reusable code [5].

2 Evaluation Procedure

2.1 Teaching Software Testing

In the CS-I classroom, we explained how to write test cases. We spent only 25
minutes and showed one example of how to write test cases. Right after the
presentation, we provided a similar problem and asked students’ to write test cases.
More than 70% of the students came up with test cases. Of course, they did not know
in detail about software testing or its different techniques.

2.2 Measuring Program Quality

In our experiment, the same instructor taught both section-I and section-II of CS-I
class. We collected students’ projects for both sections. Section-I students did not
follow our approaches. Section-II students followed our approaches and submitted
test suites one week earlier than their final submission. We created a test suite
following different testing techniques such as boundary value analysis and
equivalence partitioning. We executed all test cases in all students’ programs in
section-I and section-II. Executing a black box test suite, we found that our model-1
was effective.

2.3 Conducting Surveys and Interviews

In our approach, students’ involvement plays a vital role. We conducted a pre-test and
post-test survey of students’ understanding and achievement from the experiment. We
took several in depth interviews to faculties who teach computer classes.

3 Results

In this paper, we have proposed two models in two introductory programming classes
to improve software quality. Our approach is to make a cultural shift in teaching
programming languages by making testing an integral part of programming practices.
Students not only need to produce correct output but also needs to understand how to
test their programs. In our opinion, if you know how to write the program then you
better know how to test it and make sure that your program is doing what you
expected to do.

127

We spent only 25 minutes teaching students how to write test cases, and more
than 70% of the students came up with test cases in the classroom. We collected
students’ projects and measured the quality of the program by applying the same test
suites to both sections’ code. Student feedback was very positive about our model.

We have not completed the experiment in this semester yet. We will run the
same experiment again in next semester. However, our initial finding shows
significant improvements in students’ program quality. We found teaching basic
concepts and terminology of software testing, does not take much time. Our approach
helps students to understand the problem better. Students like testing their code and it
boost their confidence.

4 Conclusions

In this paper, we proposed two different models for two introductory programming
classes. In the first model, course CS-I students would get a preliminary idea about
how to write test cases and test program. In our experiment, the same instructor
teaches the same course in two different sections. We eliminated many factors that
vary from instructor to instructor. One section instructor followed our model used
testing as a prerequisite of writing code and other section did not. Keeping all factors
the same, we measured how our model can play a role in improving programming
quality.

Our initial experimental result shows that our model can be successful. We found
that our approach helps students to understand the problem and improves software
quality. We also found that teaching basic concepts of software testing to beginner
students does not take much time, and student feedback was very positive.

References

1. McCracken, M., Almstrum, V., Laxer, C., and others: A Multi-national, multi-institutional
study of assessment of programming skills of first year CS students, volume 33, issue
COLUMN: ITiCSE 2001 working group reports, Pages: 125 – 180, 2001

2. Townhidnejad, Hilburn: Software quality: a curriculum postscript?, Technical Symposium
on Computer Science Education, Proceedings of the thirty-first SIGCSE technical
symposium on Computer science education, Austin, Texas, United States Pages: 167 –
171, 2000

3. Nagappan, N., William, L., Ferzil, M., Wiebe, E., Yang, K., Miller, C., and Balik, S.:
Improving the CS1 Experience with Pair Programming. Proceedings of the 34th SIGCSE
Technical Sympoisum on Computer Science Education, Reno, Nevada, USA, March 2003.

4. Hermann, N., Popyack, J., Char, B., Zoski, P., Cera, C., and Lass, R.N.: Redesigning
computer programming using multilevel online modules for mixed audience. Proceedings
of the 34th SIGCSE Technical Symposium on Computer Science Education, Reno,
Nevada, USA, March 2003.

5. Edwards, E.: Using test-driven development in the classroom: Providing students with
concrete feedback on performance. In Proceedings of the EISTA'03, August 2003

128

