BOUNDS FOR THE SOLUTION OF DISCRETE COUPLED LYAPUNOV EQUATION
Adam Czornik, Aleksander Nawrat
2006
Abstract
Upper and lower matrix bounds for the solution of the discrete time coupled algebraic Lyapunov equation for linear discrete-time system with Markovian jumps in parameters are developed. The bounds of the maximal, minmal eigenvalues, the summation of eigenvalues, trace and determinant are also given.
References
- J. C. Allwright, A Lower Bound for the Solution of the Algebraic Riccati Equation of Optimal Control and a Geometric Convergence for the Kleinman Algorithm, IEEE Transactions on Automatic Control, vol. 25, 826-829, 1980.
- E. K. Boukas, A. Swierniak, K. Simek and H. Yang, Robust Stabilization and Guaranteed Cost Control of Large Scale Linear Systems With Jumps, Kybernetika, vol. 33, 121-131, 1997.
- H. J. Chizeck, A.S. Willsky, D. Castanon, Discrete-Time Markovian-Jump Linear Quadratic Optimal Control, International Journal of Control, vol 43, no. 1, 213- 231, 1986.
- A. Czornik, A. Nawrat, On the Bounds on the Solutions of the Algebraic Lyapunov and Riccati Equation, Archives of Control Science, vol. 10, no. 3-4, 197- 244, 2000.
- A. Czornik, A. Swierniak, Lower Bounds on the Solution of Coupled Algebraic Riccati Equation, Automatica, vol. 37, no. 4, 619-624, 2001,
- A. Czornik, A. Swierniak, Upper Bounds on the Solution of Coupled Algebraic Riccati Equation, Journal of Inequalities and Applications, vol. 6, no. 4, 373-385, 2001.
- A. Gajic, M. Qureshi, Lyapunov Matrix Equation in System Stability and Control, Mathematics in Science and Engineering, vol. 195, Academic Press, London, 1995.
- N. Komaroff, On Bounds for the Solution of the Riccati Equation for Discrete-Time Control System, Control and Dynamics Systems, vol. 76, pp. 275, 311, 1996.
- W. H. Kwon, Y. S. Moon and S. C. Ahn, Bounds in Algebraic Riccati and Lyapunov Equations: Survey and Some New Results, International Journal of Control, vol 64, no. 3, 377-389, 1996.
- G. Langholz, A New Lower Bound on the Cost of Optimal Regulator, IEEE Transactions on Automatic Control, vol. 24, 353-354, 1979.
- C. H. Lee, T.-H.S. Li, and F. C. Kung, A New Approach for the Robust Stability of Perturbed Systems with Class of Non-Commensurate Time Delays, IEEE Transactions on Circuits and Systems -I, vol. 40, 605-608, 1995.
- A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and its Applications, Academic Press, New York, 1979.
- T. Mori, E. Noldus, M. Kuwahara, A Way to Stabilizable Linear System With Delayed State, Automatica, vol. 19, 571-574, 1983.
- T. Mori and I. A. Derese, A Brief Summary of the Bounds on the Solution of the Algebraic Matrix Equations in Control Theory, International Journal of Control, vol 39, no. 2, 247-256, 1984.
- R. V. Patel and M. Toda, Quantitative Measures of Robustness for Multivariable Systems, Proceedings of the Joint Automatic Control Conference, San Francisco, TP8-A, 1980.
- W. J. Rugh, Linear System Theory, Englewood Cliffs, NJ: Prentice-Hall, 1993.
Paper Citation
in Harvard Style
Czornik A. and Nawrat A. (2006). BOUNDS FOR THE SOLUTION OF DISCRETE COUPLED LYAPUNOV EQUATION . In Proceedings of the Third International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO, ISBN 978-972-8865-61-0, pages 11-15. DOI: 10.5220/0001201900110015
in Bibtex Style
@conference{icinco06,
author={Adam Czornik and Aleksander Nawrat},
title={BOUNDS FOR THE SOLUTION OF DISCRETE COUPLED LYAPUNOV EQUATION},
booktitle={Proceedings of the Third International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,},
year={2006},
pages={11-15},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001201900110015},
isbn={978-972-8865-61-0},
}
in EndNote Style
TY - CONF
JO - Proceedings of the Third International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,
TI - BOUNDS FOR THE SOLUTION OF DISCRETE COUPLED LYAPUNOV EQUATION
SN - 978-972-8865-61-0
AU - Czornik A.
AU - Nawrat A.
PY - 2006
SP - 11
EP - 15
DO - 10.5220/0001201900110015