MULTIPLE MOBILE ROBOTS MOTION-PLANNING: AN APPROACH WITH SPACE-TIME MCA

Fabio M. Marchese

2006

Abstract

In this paper is described a fast Path-Planner for Multi-robot composed by mobile robots having generic shapes and sizes (user defined) and different kinematics. We have developed an algorithm that computes the shortest collision-free path for each robot, from the starting pose to the goal pose, while considering their real shapes, avoiding the collisions with the static obstacles and the other robots. It is based on a directional (anisotropic) propagation of attracting potential values in a 4D Space-Time, using a Multilayered Cellular Automata (MCA) architecture. This algorithm makes a search for all the optimal collision-free trajectories following the minimum valley of a potential hypersurface embedded in a 5D space.

References

  1. Bandini, S. and Mauri, G. (1999). Multilayered cellular automata. Theoretical Computer Science, 217:99-113.
  2. Barraquand, J., Langlois, B., and Latombe, J. C. (1992). Numerical potential field techniques for robot path planning. IEEE Trans. on Systems, Man and Cybernetics, 22(2):224-241.
  3. Bennewitz, M., Burgard, W., and Thrun, S. (2001). Optimizing schedules for prioritized path planning of multi-robot systems. In IEEE Int. Conf. on Robotics and Automation (ICRA), Seoul (Korea).
  4. Goles, E. and Martinez, S. (1990). Neural and Automata Networks: dynamical behavior and applications. Kluwer Academic Publishers.
  5. Jahanbin, M. R. and Fallside, F. (1988). Path planning using a wave simulation technique in the configuration space. In Artificial Intelligence in Engineering: Robotics and Processes (J. S. Gero ed.), Southampton. Computational Mechanics Publications.
  6. Kathib, O. (1985). Real-time obstacle avoidance for manipulator and mobile robots. In Int. Conf. on Robotics and Automation.
  7. Latombe, J. C. (1991). Robot Motion Planning. Kluwer Academic Publishers, Boston, MA.
  8. LaValle, S. M. and Hutchinson, S. A. (1998). Optimal motion planning for multiple robots having independent goals. IEEE Trans. on Robotics and Automation, 14(6):912-925.
  9. Lozano-Pérez, T. (1983). Spatial planning: A configuration space approach. IEEE Trans. on Computers, C32(2):108-120.
  10. Lozano-Pérez, T. and Wesley, M. A. (1979). An algorithm for planning collision-free paths among polyhedral obstacles. Comm. of the ACM, 22(10):560-570.
  11. Tzionas, P. G., Thanailakis, A., and Tsalides, P. G. (1997). Collision-free path planning for a diamond-shaped robot using two-dimensional cellular automata. IEEE Trans. on Robotics and Automation, 13(2):237-250.
  12. Warren, C. (1990). Multiple robot path coordination using artificial potential fields. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), pages 500-505.
Download


Paper Citation


in Harvard Style

Marchese F. (2006). MULTIPLE MOBILE ROBOTS MOTION-PLANNING: AN APPROACH WITH SPACE-TIME MCA . In Proceedings of the Third International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-972-8865-60-3, pages 398-403. DOI: 10.5220/0001218103980403


in Bibtex Style

@conference{icinco06,
author={Fabio M. Marchese},
title={MULTIPLE MOBILE ROBOTS MOTION-PLANNING: AN APPROACH WITH SPACE-TIME MCA},
booktitle={Proceedings of the Third International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2006},
pages={398-403},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001218103980403},
isbn={978-972-8865-60-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - MULTIPLE MOBILE ROBOTS MOTION-PLANNING: AN APPROACH WITH SPACE-TIME MCA
SN - 978-972-8865-60-3
AU - Marchese F.
PY - 2006
SP - 398
EP - 403
DO - 10.5220/0001218103980403