6 CONCLUSIONS
In this paper an ANN functional-adaptive dynamic
control scheme for the trajectory tracking problem of
mobile robots is proposed. The resulting algorithm
requires no preliminary information about the nonlin-
ear functions in the dynamics and uses a RBF neural
network, trained online in consideration of noise, un-
certainty and disturbances by using a Kalman filter.
The designed scheme was tested successfully by real-
istic simulations for several noise conditions and pa-
rameter variations. The adaptive controller showed
improved performance when compared to the non-
adaptive case in the face of parameter uncertainty. Fu-
ture research will investigate the use of parameter re-
setting in the estimator and the development of dual
stochastic nonlinear control laws (Fabri and Kadirka-
manathan, 2001) which would take into account the
inaccuracy of the ANN approximations, giving rise to
better transient performance. We anticipate to get sat-
isfactory experimental results once the proposed al-
gorithm is implemented on a real mobile robot in the
near future.
REFERENCES
Brockett, R. W. (1983). Asymptotic Stability and Feedback
Stabilisation. Differential Geometric Control Theory.
Birkh
¨
auser, Boston, MA.
Bugeja, M. K. and Fabri, S. G. (2005). Multilayer percep-
tron functional adaptive control for trajectory track-
ing of wheeled mobile robots. In Proc. 2nd Interna-
tional Conference on Informatics in Control, Automa-
tion and Robotics (ICINCO2005), volume 3, pages
66–72, Barcelona, Spain.
Canudas de Wit, C., Khennoul, H., Samson, C., and Sor-
dalen, O. J. (1993). Nonlinear control design for mo-
bile robots. In Zheng, Y. F., editor, Recent Trends
in Mobile Robots, Robotics and Automated Systems,
chapter 5, pages 121–156. World Scientific.
Corradini, M. L., Ippoliti, G., and Longhi, S. (2003). Neural
networks based control of mobile robots: Develop-
ment and experimental validation. Journal of Robotic
Systems, 20(10):587–600.
Corradini, M. L. and Orlando, G. (2001). Robust tracking
control of mobile robots in the presence of uncertain-
ties in the dynamic model. Journal of Robotic Sys-
tems, 18(6):317–323.
Crowley, J. L. (1989). Asynchronous control of orienta-
tion and displacement in a robot vehicle. In Proc. of
the 1989 IEEE International Conference on Robotics
and Automation (Vol. 3), pages 1277–1282, Scotts-
dale, AZ.
de Sousa, C., Hemerly, E. M., and Galvao, R. K. H. (2002).
Adaptive control for mobile robot using wavelet net-
works. IEEE Transactions on Systems, Man and Cy-
bernetics, 32(4):493–504.
Ding, D. and Cooper, R. A. (2005). Electric-powered
wheelchairs. IEEE Control Systems Magazine,
25(2):22–34.
Fabri, S. G. and Kadirkamanathan, V. (1998). Dual adaptive
control of nonlinear stochastic systems using neural
networks. Automatica, 34(2):245–253.
Fabri, S. G. and Kadirkamanathan, V. (2001). Functional
Adaptive Control: An Intelligent Systems Approach.
Springer-Verlag, London, UK.
Fierro, R. and Lewis, F. L. (1995). Control of a nonholo-
nomic mobile robot: Backstepping kinematics into
dynamics. In Proc. IEEE 34th Conference on Deci-
sion and Control (CDC’95), pages 3805–3810, New
Orleans, LA.
Fierro, R. and Lewis, F. L. (1998). Control of a non-
holonomic mobile robot using neural networks. IEEE
Trans. Neural Networks, 9(4):589–600.
Fukao, T., Nakagawa, H., and Adachi, N. (2000). Adap-
tive tracking control of a nonholonomic mobile ro-
bot. IEEE Transactions on Robotics and Automation,
16(5):609–615.
Kalman, R. E. (1960). A new approach to linear filtering
and prediction problems. Trans. ASME J. Basic Eng.,
82:34–45.
Kanayama, Y., Kimura, Y., Miyazaki, F., and Noguchi, T.
(1990). A stable tracking control method for an au-
tonomous mobile robot. In Proc. IEEE International
Conference of Robotics and Automation, pages 384–
389, Cincinnati, OH.
Kolmanovsky, I. and McClamroch, N. H. (1995). Develop-
ments in nonholonomic control problems. IEEE Con-
trol Systems Magazine, 15(6):20–36.
Lamiraux, F., Laumond, J. P., VanGeem, C., Boutonnet,
D., and Raust, G. (2005). Trailer truck trajectory op-
timization: the transportation of components for the
Airbus A380. IEEE Robotics and Automation Maga-
zine, 12(1):14–21.
Maybeck, P. S. (1979). Stochastic Models, Estimation and
Control, volume 141-1 of Mathematics in Science and
Engineering. Academic Press Inc., London, UK.
Oubbati, M., Schanz, M., and Levi, P. (2005). Kinematic
and dynamic adaptive control of a nonholonomic mo-
bile robot using RNN. In Proc. IEEE Symposium on
Computational Intelligence in Robotics and Automa-
tion (CIRA’05), Helsinki, Finland.
Poggio, T. and Girosi, F. (1990). Networks for approxima-
tion and learning. Proc. IEEE, 78(9):1481–1497.
Sarkar, N., Yun, X., and Kumar, V. (1994). Control of
mechanical systems with rolling constraints: Appli-
cations to dynamic control of mobile robots. Interna-
tional Journal of Robotics Research, 13(1):55–69.
van de Water, H. and Willems, J. C. (1981). The cer-
tainty equivalence property in stochastic control the-
ory. IEEE Transactions on Automatic Control, AC-
26(5):1080–1087.
NEURO-ADAPTIVE DYNAMIC CONTROL FOR TRAJECTORY TRACKING OF MOBILE ROBOTS
411