References
1. C. Phol, and J.L. Van Genderen, Multisensor Image Fusion in Remote Sensing: Concepts,
Methods and Applications, International Journal of Remote Sensing, 19(5), pp. 823-854,
1998.
2. T. Twellmann, A. Saalbach, O. Gerstung, M. O Leach and T.W. Nattkemper, Image fusion
for dynamic contrast enhanced magnetic resonance imaging, BioMedical Engineering
OnLine 2004,
http://bmc.ub.uni-potsdam.de/1475-925X-3-35/
3. G. Piella, A general framework for multiresolution image fusion: from pixels to regions,
2002, PNA-R0211,
http://www.cwi.nl/ftp/CWIreports/PNA/PNA-R0211.pdf [2]
4. A. Toet, Hierarchical image fusion, Machine Vision and Applications, 3(1), p.p. 1-11, 1990
5. P.J. Burt and E.H. Adelson, The Laplacian pyramid as a compact image code, IEEE Trans-
actions on Communications, 31(4), pp. 532–540, 1983.
6. H. Li, B.S. Manjunath, and S.K. Mitra, Multisensor image fusion using the wavelet trans-
form, Graphical Models and Image Processing, 57(3), pp. 235-245, May 1995
7. T.A. Wilson, S.K. Rogers and L.R. Myers, Perceptual based hyperspectral image fusion
using multiresolution analysis, Optical Engineering, 34(11), pp. 3154-3164, Nov 1995
8. A. Hyv¨arinen, J. Karhunen, and E. Oja, Independent Component Analysis. John Wiley &
Sons Ltd, 2001.
9. A. J. Bell and T. J. Sejnowski, “An information-maximization approach to blind separation
and blind deconvolution,” Neural Computation, 7(6), pp. 1129–1159, 1995.
10. A. J. Bell, T. J. Sejnowski, and M. S. Bartlett, The independent components of natural
scenes are edge filters, Society for Neuroscience Abstracts, 23(1), p. 456, 1997
32